
Using the Unity Game Engine to Develop SARGE: A Case Study

Jeff Craighead, Jennifer Burke, and Robin Murphy

Abstract— This paper discusses the implementation of
the Search and Rescue Game Environment (SARGE) using
the Unity game engine. The paper will explain the key
benefits of using Unity versus other popular platforms and
how the various components of the Unity API and environ-
ment editor are used to create SARGE. This discussion is
divided into sections covering the various robots, sensors,
environments, and user interfaces in SARGE.

I. INTRODUCTION

With robot simulation becoming popular again it is
important for the robotics research community to be
able to focus on the important and interesting part of
their work, such as building real robots and algorithms,
not building robot simulators. It it the results of the
simulations that we are after. This leads to the question
addressed in this paper, “What simulation engine is
easiest to use to accomplish a given simulation task?”
In the past many researchers have chosen from the
available commercial or open source game engines such
as Unreal [1], [2], [3], while others have used purpose
built robot simulation engines such as Stage, Gazebo
[4], [5], [6], [7], and Webots [8], [9], [10], and others
still have used math packages such as Matlab [11],
[12], [13], [14]. Each type of engine has plusses and
minuses and choosing the right package depends heavily
on the accuracy and desired output of the simulation
and tends to be a very project specific choice. The
Search and Rescue Game Environment (SARGE), a
distributed, multi-player, robot operator training game
and robot simulator [15], [16], [17], was initially based
on the Unreal2 engine as an extension of USARSim,
however due to complications with Unreal2, SARGE
development was moved to the Unity engine [18].

Jeff Craighead, Jennifer Burke, and Robin Murphy are with the
Institute for Safety, Security and Rescue Technology at the Univer-
sity of South Florida. 4202 E. Fowler Avenue, Tampa, FL, USA.
{craighea,jlburke4,murphy}@cse.usf.edu. This work was sponsored,
in part, by the US Army Research Laboratory under Cooperative
Agreement W911NF-06-2-0041. The views and conclusions contained
in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of
the ARL or the US Government. The US Government is autho-
rized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation hereon. All aerial photography
provided by GoogleEarth.

The goal of the SARGE project is to create a video
game that requires players to master the skills necessary
to operate several types of robots that are typically
used in search and rescue and law enforcement. This
includes the iRobot Packbot, the Inuktun VGTV, and
a rotary-wing UAV. Additionally online play requires
players to work in teams to conduct a search of a
disaster area. The game will track a player’s performance
over multiple play sessions and provide them with in-
game feedback on their skill improvement. The Unity
engine has made development of SARGE simple and
has allowed the developers to concentrate on content
development instead of worrying about integrating var-
ious open source physics and rendering components or
fighting with buggy environment editors. This paper
will provide an outline of the benefits of using Unity
versus other simulation engines, then provide a detailed
description of how SARGE is implemented using the
engine.

II. RELATED WORK

There are a large number of robot simulators avail-
able, as mentioned in Section I, including USARSim,
Webots, and Player/Stage robot simulators as well as
Matlab. This section will focus on the key features of
these popular simulators and discuss why we decided to
create another from the ground up.

USARSim [19] made its debut in 2003, making it
one of the first high fidelity, open source, 3D robot
simulators available. The benefits were numerous to
USARSim, it was cheap (it was based on the best
game engine at the time, Epic’s Unreal2 engine) and
USARSim was created as a mod which meant that the
cost for developers was the same as users (the price
of the game UnrealTournament). The Karma physics
engine was high fidelity for the time and allowed de-
velopers to focus on art and code development instead
of integrating a custom physics engine with a rendering
system. However, Unreal2’s world editor UnrealEd is
buggy (the editor will often crash, causing the developer
to loose work) and cumbersome to use. Additionally the
documentation for Unreal2’s API is seriously lacking.
There is no official source for documentation of the
Unreal API for modders, only a few wiki-like documents

that are maintained by the community with no input
from Unreal’s developers. This makes development of
new code unnecessarily difficult. At the time Unreal was
the best choice and the benefits outweighed the faults
and in fact the benefits are the same as we are claiming
for Unity today. The problem with continuing to use
Unreal2 is that now there are better choices available,
including Unreal3 which still suffers from a lack of
documentation.

Webots [8], currently late in the development cycle
of version 5, combines the high fidelity Open Dynamics
Engine (ODE) with a VRML-like rendering engine and
provides a C/C++ and Java API. Robots are developed
by adding nodes to a hierarchy, some of which define the
shape of the robot, while others define sensor and actua-
tor locations. Environments are constructed in a similar
manner. While the ODE provides Webots with a high
fidelity physics simulation, the VRML rendering system
is not sufficient to reproduce real-world locations and
objects with sufficient detail for high fidelity operator
training.

Gazebo [4] Gazebo is a 3D environment simulator
which is part of the Player/Stage project. Gazebo also
uses ODE as a physics engine. Gazebo uses the open
source Ogre rendering engine, which is used in a variety
of commercial projects and can provide a high quality
visuals. However, Gazebo robots and environments are
created by hand coding XML files, which limits the
possibilities for visually and physically complex scenes
and robots to more VRML-like structures.

Matlab [11] is extremely popular for robot simula-
tion, particularly because the available Matlab toolboxes
allow users to do rapid prototyping of robot control
systems. However Matlab does not provide any type of
physical environment simulation system, so each user
must create their own. This has produces many 2D
and 3D graph based visualizations for robot simulations
because plotting graphs is simple in Matlab. Matlab
does have a VR toolbox which is a VRML rendering
environment, so while this is sufficient for evaluation of
low level controllers and some high level algorithms,
the lack of high quality visualization makes Matlab
insufficient for operator training purposes.

The robot simulators discussed in this section are all
popular in current robotics research, yet all suffer from
some deficiency that makes them insufficient for opera-
tor training work. Unreal2 was cheap and high fidelity
for its time, however there are several better choices
today. Unreal2’s rendering engine and environment ed-
itor is still superior to the other simulators discussed,
however the Karma physics engine that Unreal2 uses

is no match for ODE and is probably on par with the
average Matlab simulation. None of these simulators are
developer friendly, they either require hand coding of
environment layouts, are lacking necessary documenta-
tion, or in the case of Matlab are a well documented
blank slate with no physics or rendering capabilities.
For this reason other engines were investigated and
the Unity engine seems to be the best solution for a
high fidelity, developer friendly, cost effective simulation
environment.

III. THE UNITY ENGINE

The Unity game engine is developed by Unity Tech-
nologies in Denmark. Unity integrates a custom render-
ing engine with the nVidia PhysX physics engine and
Mono, the open source implementation of Microsoft’s
.NET libraries. The benefits of using Unity are many
when compared to the engines discussed in Section II.
This section provides a breakdown of what we consider
to be the key features of Unity that make it an excellent
robot simulation engine.

Documentation. The Unity engine comes with com-
plete documentation with examples for its entire API.
This is the biggest benefit of Unity and leads to increased
productivity when compared to other engines such as
Unreal or Source which only provide partial documen-
tation for non-paying customers (mod developers).

Developer Community. There is an active on-line
developer community which can often provide assistance
for new users. The Unity Technologies developers also
are very willing to add features to the engine at a users
request, which will never happen if using a big-name
engine such a Unreal. In fact several of the features
existing in the Unity API are a result of requests from
the SARGE developers.

Drag-n-Drop. Unity’s editor is by far the easiest
to use when compared to Unreal, Source, or Torque.
Content is listed in a tree and is added to an environment
in a drag-n-drop manner. Objects in the environment are
listed in a separate tree, each of which can be assigned
multiple scripts written in C#, a Javascript-like language,
or Boo as well as physics and rendering properties.
Script developers have access to the complete Mono
API. Scripts can give objects interactive behaviors,
create user interfaces, or simply manage information.
Figure 1 shows a screenshot of the Unity Editor being
used to develop a user interface for the iRobot Packbot.

Physics & Rendering. By using physics properties,
objects can be given mass, drag, springiness, bounciness,
and collision detection as well as be assembled using a
variety of joints. The physics properties are simulated
by nVidia’s PhysX engine, which is used in many AAA

commercial games. The rendering properties include
shader and texture assignment which affect the appear-
ance of visible objects. Unity’s custom rendering engine
uses a simplified shader language which is compiled
into DirectX 9 or OpenGL 2.0 shaders depending on
the target platform.

Multiplatform Distribution. The Unity engine’s ed-
itor runs on OSX, however applications created using
Unity can be compiled for OSX, Windows, or as a
Web-Player (which runs in a web browser via a plu-
gin, similar to Adobe Flash). There are no restrictions
on distribution of applications created with Unity and
because applications created with Unity are not mods of
existing games the end user does not need to own a copy
of anything. Complete binaries can simply be distributed
as the developer wishes.

Low Cost. The Unity engine has a relatively low cost
for a complete game engine (although more expensive
than the free open source engines). The Indie version
of the engine is US $199 while the Pro version, which
is required to publish for Windows is US $750 for an
Academic license or US $1499 otherwise. This pricing
is comparable to Torque, yet Unity’s Editor is in our
opinion much easier to use. While this is more expensive
than modding an existing game, which usually only
requires the investment in a copy of a game, it provides
far more developmental freedom. If one were to use the
Unreal or Source engines in a non-mod project, the cost
for engine license and complete documentation would
run well over US $300,000.

The remainder of this paper will discuss how Unity
has been used to implement various pieces of SARGE,
including the robots, sensors, environments, and user
interface.

Fig. 1. A screenshot of an interface for a Packbot being developed
in Unity.

IV. ROBOTS

This section will describe the implementation of four
SARGE robots using the Unity game engine. The robots
available in the current version of SARGE include the
iRobot Packbot Scout, the iRobot ATRV-Jr., the Inuktun
VGTV Extreme, the USF SeaRAI, and the iSensys
IP3. The Packbot and VGTV are both tracked ground
vehicles and are implemented similarly using a custom
tracked vehicle class, due to space limitations this paper
will focus on the Packbot.

Each of the robots is modeled in Cheetah3D and
consist of a hierarchy of objects. The root object of
each hierarchy is the robot’s largest body piece. Movable
parts such as the Packbot’s flippers or the IP3’s rotor are
parented to the root. Unity imports the native Cheetah3D
files and maintains the object hierarchy which allows
the movable components to be controlled individually
through one or more scripts.

A. iRobot Packbot

Tracked vehicles are difficult to simulate. Typically
tracks are simulated using many wheels1 or using a
sliding surface. SARGE uses a sliding surface to simu-
late the the tracks of tracked vehicles. At each contact
point a force is applied in the opposite direction of the
worlds gravity to keep the vehicle from falling through
the surface it is resting on. To move the vehicle a
force is applied at each contact point in the direction
the track would move while the texture of the track
is shifted to give the illusion that the track is turning.
This is the typical approach used in video games which
include tracked vehicles such as tanks. By applying a
force at the contact points for each track, the vehicle
responds similarly to the real Packbot. Drag forces are
applied automatically by the physics engine to each track
depending on the surface properties of the object the
track is in contact with. Figure 2 shows a screenshot
of the Packbot Scout model in SARGE. The flippers
have the full 360◦ range of motion that the real Packbot
flippers have and apply a force along the contact surface.
The simulated Packbot currently has a single sensor, a
standard video camera.

B. iRobot ATRV-Jr

The ATRV-Jr. model in SARGE makes use of Unity’s
built in wheel collider system. The body and wheels
were modeled in Cheetah3D with the wheels parented to
the body. Unity’s built in wheel colliders are assigned to
each wheel object in the hierarchy. The wheel colliders

1USARSim uses this method

take the wheel radius and friction properties as param-
eters. A control script is attached to the robot’s body
object which listens for commands from the user, the
script then adjusts the power applied to each wheel. The
sensors attached to the vehicle include the laser scanner,
IMU, GPS, compass. Figure 3 shows the ATRV-Jr. as it
appears in SARGE.

C. USF SeaRAI

The USF SeaRAI is an unmanned surface vehicle
designed for inspection of port and littoral environments.
This vehicle is shown in Figure 4. It consists of a main
beam attached to two pontoons with two motors in the
aft. The vehicle is steered using the motors. The simu-
lated vehicle floats on objects with an attached buoyancy
script which applies a buoyant force at the contact points
based on the estimated volume of the submerged portion
of the vehicle. This allows the simulated vehicle to run
aground if it is steered too close to shore. The motors
operate by applying a force at the point on the vehicle
where the motor is attached. A control script attached
to the boat translates user commands into motor forces.

D. iSensys IP3

The iSensys IP3 is an R/C helicopter based unmanned
aerial vehicle. The simulated vehicle works by applying
a motor force at the rotor head and at the tail rotor.
The rotor head tilts with user input which adjusts the
direction the lift force is applied. The force at the tail
rotor is adjusted in the control script to maintain the
heading of the vehicle, which simulates the effect of a
heading hold gyro. The vehicle is equipped with two
video cameras, one fixed nose camera for the pilot and
one on the pan/tilt module for the payload operator. The
IP3 is shown in Figure 5, note that the cameras are not
shown in the model at this time.

Fig. 2. A screen capture of the simulated iRobot Packbot Scout in
SARGE.

Fig. 3. A screen capture of the simulated iRobot ATRV-Jr. in SARGE.

Fig. 4. A screen capture of University of South Florida’s SeaRAI
unmanned surface vehicle in SARGE.

Fig. 5. A screen capture of the iSensys IP3 unmanned aerial vehicle
in SARGE.

V. SENSORS

This section focuses on the implementation of various
sensors in SARGE. The sensors discussed in this section
include a planar laser range scanner, 3D camera, com-
pass, global positioning (GPS), odometry, and inertial
measurement (IMU) sensors. SARGE also includes a
standard video camera sensor, however this functionality
is built into Unity and due to space limitations is
not discussed in this section. All sensors are empty
Unity game objects with a script attached that performs
the necessary operations to produces a reading. Range
sensors in SARGE are implemented using the physics
system’s raycast functions, which return the distance to
an object given an origin, direction and distance. The
GPS and compass data are calculated as an offset from a
reference point in the Unity environment. The odometry
data is calculated for each wheel by accumulating the
rotation of each wheel every frame. Finally the inertial
measurements are calculated based on the translation
and rotation of the vehicle each frame. Figure 6 shows
the area without any sensor debug information displayed
as seen in the Unity editor.

A. Planar Laser Scanner

The simulated planar laser is a straightforward use of
Unity’s Raycast function. The script takes as parameters
the maximum distance for the raycast, the scan angle
in degrees, the number of rays to cast, and the number
of scans per second. The script uses a timer to kick off
a loop that casts the specified number of rays within
the specified angle. The script attempts to reproduce the
behavior of the SICK LMS-200, as such the scan starts
on the left side of the device and plus or minus up to
4mm of random error is introduced into each distance
measurement. Figure 7 shows the laser scanner’s debug
display in the Unity editor. The start of the scan is
colored green and fades to red as the scan completes.
The blue rays indicate a hit detected by the Raycast.
For the rays that do not indicate a hit the distance is set
to the maximum distance parameter, which is consistent
with the data returned by the LMS-200.

B. Range Camera

Like the planar laser scanner the simulated range
camera uses of Unity’s Raycast function. By default
this produces a 64x64 array of range data, like the
Canesta range sensor used in the CRASAR lab. The
script allows the user to configure a maximum distance,
horizontal resolution, vertical resolution, and field of
view. For each frame the script simply calls the Raycast
function XRes*YRes number of times (the default is

64x64 or 4096 raycasts). This makes this sensor rel-
atively processor intensive to run, however as long as
a single instance of SARGE is not running more than
two or three of these sensors simultaneously there is
no noticeable performance degradation. As CPU speed
continues to increase this will become less of a problem.
Figures 8 and 9 show the debug display and the output
of the range camera. The output images are colored
similarly to the output of Canesta’s debug application
where red indicates a near 0 distance and violet is the
maximum distance detectable by the sensor. Unlike the
real time-of-flight range sensors which have a problem
with range banding2 the simulated range sensor does
not yet implement this type of error. Figure 8 shows the
range camera with a resolution of 64x64 pixels. Figure 9
shows the range camera with a resolution of 256x256
pixels. The difference can clearly be seen in the output
images (right), additionally the low resolution debug
output (left) displays a fringing at the edges indicating a
lower resolution. The higher resolution range sensor uses
65536 raycasts every frame. Running at this resolution
produces a noticeable slowdown in the simulation since
this is equivalent of running 16 low resolution sensors.

C. Compass

The compass script is very simple. Unity game ob-
jects, like objects in pretty much all 3D applications
have an orientation in addition to a position. When
designing an environment a reference object is placed
with its Z axis facing the desired North direction. The
compass script then uses the offset of its Z axis3 from the
reference direction to determine the compass heading.
Figure 10 shows a reference point with the Z axis
oriented to an arbitrary North along with two robots,
one facing North (0◦), the other facing East (90◦).

D. Global Positioning

The simulated GPS, like the compass, uses an offset
from a reference point to convert from an arbitrary
point in SARGE’s world space to a real-world pair of
coordinates. If the environment is modeled after a real-
world location, the reference point is placed in a known
location and assigned the corresponding real-world lat-
itude and longitude using a script that simply holds
these variables. Each world unit in Unity and SARGE
corresponds to 1m in the real-world which makes the
offset calculation trivial. The distance between the robot
and the reference point with respect to the X and Z axes

2Objects that are farther than the maximum detectable range still
appear in the image, but with invalid distance readings, causing the
ranges to appear as a series of bands.

3The Z axis of the object it is attached to.

of the reference point. These distances are divided by
the number of meters per degree for the given latitude
and longitude of the reference point. Equation 1 shows
the formula used to calculate the number of meters per
degree of latitude and Equation 2 shows the formula
used to calculate the number of meters per degree of
longitude. This is necessary because these distances
change depending on the given latitude. The accuracy of
formulas were obtained from [20] and have been verified
experimentally in through their use in [16].

latlen = 111132.92
+ (−559.82 ∗Mathf.Cos(2 ∗ lat))
+ (1.175 ∗Mathf.Cos(4 ∗ lat))
+ (−0.0023 ∗Mathf.Cos(6 ∗ lat)) (1)

lonlen = (111412.84 ∗Mathf.Cos(lat))
+ (−93.5 ∗Mathf.Cos(3 ∗ lat))
+ (0.118 ∗Mathf.Cos(5 ∗ lat)) (2)

E. Odometry

The simulated odometry sensor operates similarly to
its real-world counterpart. Wheeled robots in SARGE
use Unity’s built in wheel system. This wheel system
provides the current rotations per minute (RPM) of each
wheel in the system. For every frame of the simulation
the RPM of a wheel is read and converted to rotations
per second and then multiplied by the fraction of a
second since the last update and the circumference of
the wheel. This gives the linear distance the wheel would
travel if there is no slippage, just like an encoder based
odometer on a real robot.

F. Inertial Measurement

The simulated Inertial Measurement Unit (IMU) cal-
culates inertial changes each frame by comparing the
position of the game object with its previous position and
orientation. This allows the IMU to provide both linear
and angular velocities and accelerations. At this point the
fidelity of this simulated sensor has not been validated
empirically, it is likely that the simulated sensor is less
noisy than its real-world counterpart.

Fig. 6. The SARGE scene used to demonstrate the laser and range
camera.

Fig. 7. The debug display for the planar laser range scanner.

Fig. 8. The debug display and output of the range camera (64x64).

Fig. 9. The debug display and output of the range camera (256x256).

Fig. 10. The compass heading is calculated using an offset from a
stationary reference point in the simulated world.

VI. ENVIRONMENTS

Creating environments in Unity is only as complex
as the environment that will be created. To create a
simple checkerboard with sides (similar to the Webots
“My First World” tutorial) the developer can model the
environment in an external application and then import
it into Unity and assign a MeshCollider or several Box-
Colliders to the object’s floor and sides. Or several Box
primitives could be placed in space and sized as desired.
To create a more complicated environment such as those
in SARGE it is necessary to model the individual pieces
in an external editor and import and place them in Unity.
Previous work [16] explains in detail how SARGE
environments are created. The short explanation is that
SARGE environments are created using reference photos
for modeling real-world buildings. Then the buildings
and foliage are placed in space using an aerial photo of
the environment being reproduced as a template. This
allows SARGE environment objects to be placed with
an accuracy of less than 1m relative to the other objects
in the environment. Figure 11 shows the University of
South Florida’s robot testbed partially completed. The
terrain is a combination of Unity’s built in terrain system
and a plane with holes in it which is necessary to
allows the robots to enter the underground portion of the
environment. At this time Unity’s terrain system doesn’t
support holes that pass through the terrain, so the terrain
directly under the testbed is set to a very low height and
covered with the plane with holes.

VII. GUIS

The user interfaces in SARGE are constructed using
Unity’s GUI API. GUI components are laid out using
blocks of code that specify the position and contents
of each GUI control. SARGE’s GUI relies on a mix
of images created in Photoshop and text labels for
each of the controls. The GUI is contained in a single
script and uses a set of flags to switch between various
menus. Figures 12 and 13 show examples of the SARGE
GUIs. Figure 12 shows the main menu which consists
of a label containing the background image and a box

Fig. 11. The USF robotics testbed environment.

filled with the four buttons. The buttons set flags to
determine which menu will be displayed during the next
frame. Figure 13 shows the graphics options menu which
consists of a background image label, a box, a toolbar,
buttons, and text labels.

Fig. 12. The SARGE main menu.

VIII. SUMMARY

This paper discussed the benefits of using the Unity
game environment versus other popular simulation en-
gines as well as explained how Unity was used to create
the Search and Rescue Game Environment (SARGE).
The main benefits of Unity are

• Complete API documentation with simple exam-
ples.

• Active developer community.
• Drag-n-Drop environment editor.

Fig. 13. The SARGE options menu.

• Uses up-to-date physics (nVidia’s PhysX) and ren-
dering engines.

• One-click multi-platform (Windows, Mac, Web)
distribution.

• Low cost.
These features combined make Unity a high fidelity

and easy to use simulation environment. SARGE cur-
rently has 5 robots that span air, ground, and sea modal-
ities. Each were modeled in an external 3D modeling
application, imported into Unity, and assigned physical
properties and control scripts. The robots each have a
compliment of sensors ranging from odometry to 3D
range cameras. The sensors are simply scripts which
make use of various Unity API functions attached to
objects in the robot models’ hierarchy. SARGE’s en-
vironments are created using a combination of Unity’s
terrain system and imported models. The takeaway mes-
sage should be to give Unity and/or SARGE a try for
your robot simulation or visualization needs. Moving the
development of SARGE to the Unity engine provided
a huge boost in developer productivity because of the
benefits listed above.

REFERENCES

[1] “Unrealtournament 2004,” http://www.unrealtournament.com/.
[Online]. Available: http://www.unrealtournament.com/

[2] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper,
“Usarsim: a robot simulator for research and education,” in
Proceedings of the 2007 International Conference on Robotics
and Automation, April 2007, pp. 1400–1405.

[3] S. Balakirsky, C. Scrapper, S. Carpin, and M. Lewis, “USARSim:
Providing a Framework for Multi-robot Performance Evalua-
tion,” Proceedings of the 6th Performance Metrics for Intelligent
Systems (PerMIS), 2006.

[4] “Player/stage/gazebo,” http://sourceforge.net/projects/playerstage.
[Online]. Available: http://sourceforge.net/projects/playerstage

[5] R. Rusu, A. Maldonado, M. Beetz, and B. Gerkey, “Extend-
ing Player/Stage/Gazebo towards Cognitive Robots Acting in
Ubiquitous Sensor-equipped Environments,” IEEE International
Conference on Robotics and Automation (ICRA) Workshop for
Network Robot System, Rome, Italy, April, vol. 14, 2007.

[6] P. Karimian, R. Vaughan, and S. Brown, “Sounds Good: Simu-
lation and Evaluation of Audio Communication for Multi-Robot
Exploration,” Proceedings of the IEEE International Conference
on Intelligent Robots and Systems, October, 2006.

[7] S. Kim, K. Kim, and T. Kim, “Human-Aided Cleaning Algo-
rithm for Low-Cost Robot Architecture,” LECTURE NOTES IN
COMPUTER SCIENCE, vol. 4552, p. 366, 2007.

[8] “Webots,” http://www.cyberbotics.com/products/webots/. [On-
line]. Available: http://www.cyberbotics.com/products/webots/

[9] L. Hohl, R. Tellez, O. Michel, and A. Ijspeert, “Aibo and webots:
Simulation, wireless remote control and controller transfer,”
Robotics and Autonomous Systems, vol. 54, no. 6, p. 472, June
2006.

[10] O. Michel, “Cyberbotics ltd - webotstm: Professional mobile
robot simulation,” in International Journal of Advanced Robotic
Systems, vol. 1, no. 1, 2004, pp. 39–42.

[11] “Matlab,” http://www.mathworks.com. [Online]. Available: http:
//www.mathworks.com

[12] D. Ernst, K. Valavanis, R. Garcia, and J. Craighead, “Unmanned
Vehicle Controller Design, Evaluation and Implementation: From
MATLAB to Printed Circuit Board,” Journal of Intelligent and
Robotic Systems, vol. 49, no. 1, pp. 85–108, 2007.

[13] F. Song, P. E. An, and A. Folleco, “Modeling and simulation of
autonomous underwater vehicles: Design and implementation,”
IEEE Journal of Oceanic Engineering, vol. 28, no. 2, pp. 283–
296, April 2003.

[14] T. Prestero, “Verification of a six-degree of freedom simulation
model for the remus autonomous underwater vehicle,” Master’s
thesis, Massachusetts Institute of Technology and Woods Hole
Oceanographic Institution, September 2001.

[15] J. Craighead, “Distributed, game-based, intelligent tutoring sys-
tems - the next step in computer based training?” in Proceedings
of the International Symposium on Collaborative Technologies
and Systems (CTS 2008), May 2008, pp. 247–257.

[16] J. Craighead, R. Gutierrez, J. Burke, and R. Murphy, “Validating
the search and rescue game environment as a robot simulator by
performing a simulated anomaly detection task,” in Proceedings
of the 2008 International Conference on Intelligent Robots and
Systems (IROS 2008), September 2008.

[17] “Search and rescue game environment,”
http://sarge.sourceforge.net. [Online]. Available: http://sarge.
sourceforge.net

[18] “Unity,” http://www.unity3d.com. [Online]. Available: http:
//www.unity3d.com

[19] “Usarsim,” http://usarsim.sourceforge.net/. [Online]. Available:
http://usarsim.sourceforge.net/

[20] (2008) Length of a degree of latitude and longitude
calculator. [Online]. Available: http://www.csgnetwork.com/
degreelenllavcalc.html

