Validating The Search and Rescue Game Environment As A Robot
Simulator By Performing A Simulated Anomaly Detection Task

Jeff Craighead, Rodrigo Gutierrez, Jennifer Burke, and Robin Murphy

Abstract— This paper presents the results from experi-
ments validating the physics and environmental accuracy
of a new robot simulation environment, the Search and
Rescue Game Environment (SARGE), which is the founda-
tion for series of robot-operator training games. An ATRV-
Jr. outfitted with a SICK laser, GPS, and compass was
used both in the real-world and in a simulated environment
modeled after the real-world testing location in a simulated
anomaly detection task. The ARTV-Jr., controlled by the
Distributed Field Robotics Architecture, navigated through
a series of waypoints in the environment. The simulated
ATRV-Jr. matched the actions of the real ATRV-Jr. in
both velocity and path similarity within 0.08m/s and 0.7m
respectively.

I. INTRODUCTION

This paper presents the results from experiments
which validate the physical accuracy of a simulated
ATRV-Jr. in the Search and Rescue Game Environment
(SARGE) as well as the method of constructing the
virtual environments in SARGE. The primary goal of
the SARGE project is to create open source single and
multiplayer video game that can be used for training
individuals and teams of robot operators. SARGE can
also be used as a simulation environment that can inter-
face with any network capable robot architecture. In the
last few years there has been a renewed interest in robot
simulators. There are many commercial and open source
simulators available such as Webots [1], USARSim
[2], SimRobot [3], Player/Stage/Gazebo [4], Microsoft’s
Robotics Studio [5] and many others. However none of
these simulators target robot operator training as SARGE
does, nor do they attempt to bring the field of serious
games into HRI research. Of these only USARSim has
had published results for validation experiments.

Jeff Craighead, Rodrigo Gutierrez, Jennifer Burke, and Robin
Murphy are with the Institute for Safety, Security and Rescue Tech-
nology at the University of South Florida. 4202 E. Fowler Avenue,
Tampa, FL, USA. {craighea,rgutier2,jlburke4,murphy} @cse.usf.edu.
This work was sponsored, in part, by the US Army Research Labo-
ratory under Cooperative Agreement W911NF-06-2-0041. The views
and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies,
either expressed or implied, of the ARL or the US Government. The
US Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation hereon.
All aerial photography provided by GoogleEarth.

The general consensus among researchers in the field
of serious games is that video games have great potential
for use in education and training beyond the simple
reading, writing, and mathematics of the past. Not only
can games be used as an entertaining teaching tool
for young students, but for adults as well in a variety
of non-education fields [6], [7], [8], [9]. SARGE will
take the next step in this area by combining robot
simulation, action games, and an intelligent tutoring sys-
tem to facilitate increased robot operator performance.
This necessitates the validation of the accuracy of the
environments and the capabilities of the robots within
SARGE.

The remainder of this paper is divided into six sec-
tions. Section II discusses the validation of other robot
simulators. Section III discusses the basic implementa-
tion and features of SARGE. Section IV describes the
plan for the validation experiment. Section V describes
the scripts used to analyze the data collected during
the experiment. Section VI describes the results of the
analysis. Finally Section VII provides a summary of this
article.

II. RELATED WORK

Previous work [10] surveyed many of the available
commercial and open source robot simulators. Aside
from the work on the USARSim project there does not
seem to be much work on validating robot simulators
themselves but instead the literature focuses on vali-
dation of robot prototypes in simulation. One cannot
simply assume that a simulator will work as described
in marketing literature which lacks empirical evidence.
As Wang states in [11], “To draw valid conclusions
from robotic simulations it is important to know the
metrics which are consistent with the operation of the
actual robot and those which are not.” The developers
of USARSim have performed a rather thorough series
of tests in order to validate the similarity between
performance of a robot or sensor in USARSim vs the
performance of the real-world counterpart.

In [11] Wang, et al. performed a series of experiments
to validate USARSim. The first stage of their experi-
ments was focused on validating the physical accuracy

of the simulator. The experiment compared velocities
and sensor readings for a real and simulated robot to
minimize the error of the simulated robot. Additionally,
the paper describes the use of a laser range finder to
verify the mapping capabilities of the simulated robot
[12]. The second stage was focused on verifying the
HRI capabilities of USARSim and involved participants
performing various tasks in a simulated version and the
real world NIST Orange arena.

While the goal of the SARGE project is to create
a training game and is not intended to be a simulator
per se, it is being used as such and for this reason it
must be validated. This validation also aids the goal
of gaming using physically accurate representations of
the real world and of the robots. Our experiment falls
between the two USARSim validation experiments in
terms of complexity. We compare velocities and pose in
a simulated version of a real world outdoor area while
the robot autonomously performs a simulated anomaly
detection task. The experiment and anomaly detection
task are described in greater detail in Section IV.

III. IMPLEMENTATION

This section describes the implementation of SARGE
including a discussion of the Unity engine and the
communication protocol used to interact with external
architectures such as the Distributed Field Robotics
Architecture (DFRA).

A. Architecture

SARGE is built using the Unity game engine, which
is developed by Unity Technologies. Unity was chosen
after abandoning UnrealEngine 2 because of the aging
Karma physics engine, buggy world editor, lack of
documentation and distribution issues. Newer physics
engines such as ODE, Havok, and PhysX provide higher
fidelity physics than Karma and the primary concern
with distributing an UnrealEngine mod is that the user
must own a copy of UnrealTournament 2004 and have
the experience necessary to install the mod on top of
Unreal. The UnrealEd world editor application is also
very buggy, crashing often, and supports only a limited
set of media file types. Because the SARGE project was
going to include environments and robots that were not
available in any existing simulator, switching engines
did not increase development time. In fact moving to
Unity increased productivity because of the well written
scripting documentation.

Unity uses the PhysX engine provides the best de-
velopment environment and licensing terms when com-
pared to many game engines including Torque, Source,
Ogre + ODE, CryEngine, and others. Unity is designed

to be easy to use for professional developers and novice
users alike, using JavaScript and C# along with the
Mono framework for scripting objects and interaction
with other applications. Content can be created in a
variety of formats which Unity reads natively. These
features allow SARGE to have a simple architecture that
make developing new simulator content easy for even
novice users. Additionally the Unity allows a license
holder to freely distribute any applications created to an
unlimited number of users who will not have to purchase
any additional applications to run the content. This is
unlike USARSim or other mod based simulators which
require the end user to own a copy of the game on which
the mod is based. Unity also provides a web browser
plugin, similar to Adobe’s Flash player, which allows
applications to be run in the browser for users who are
unable or do not wish to install applications on their
PCs.

Communication with external controllers such as the
Distributed Field Robotics Architecture is implemented
using the Mono Sockets library. A controller can simply
establish a TCP connection on a LAN or over the
Internet to SARGE and use a simple text based protocol
that identifies the target robot and service to issue a
command to. While the ASCII protocol does incur at
least a 25% overhead vs a pure binary protocol it makes
debugging and rapid prototyping much simpler.

Content creation relies heavily on Unity’s prefab
concept. Textured objects, modeled in an external appli-
cation, are imported into the SARGE project workspace.
These objects are then set up with all the necessary
physics properties and, control and sensor scripts. The
objects are then turned into Unity prefabs. Prefabs can
be instantiated at any time, in any location in the game
world.

B. Sensors and Effectors

SARGE includes the typical sensors found on a robot
including a laser range finder, compass, global posi-
tioning system, inertial measurement unit, and cameras.
Sensors in SARGE are implemented without a defined
class hierarchy because they are not normally spawned
at runtime. Instead sensors are scripts or prefab objects
which are placed on the robot’s prefab by the creator.

SARGE implements several laser range finders based
on the SICK LMS 200 series range finder, error is added
to the range reading to be consistent with the SICK
LMS 200 documentation, that is +/- up to 4mm for
each range reading. The compass and GPS in SARGE
return readings based on a reference object that has
been geo-referenced using GoogleEarth. The reference
object is assigned real world GPS coordinates and placed

with its Z-axis facing north. SARGE calculates the
offset distance and rotation from the reference point to
determine the real world location and heading of a robot
equipped with these sensors. The inertial measurement
unit (IMU) in SARGE is a 6-degree-of-freedom IMU
that reports 7 measurements. Values provided by the
IMU include both linear and angular velocities on 3
axes, both linear and angular accelerations on 3 axes,
as well as pose (roll, pitch, and yaw) of the unit.

SARGE supports a virtually unlimited number of
cameras on each vehicle. It is possible to create an
interface that displays some or all of a robots cam-
eras simultaneously. Additionally images from simulated
cameras can be sent over a network connection for
display on another device such as a physical mock up
of a robot controller. Cameras can be placed at any
position on a robot or in an environment. However each
additional camera requires the entire scene to be re-
rendered, which can cause significant performance loss
in terms of display frame rate. This can be avoided by
switching cameras on and off as needed.

C. Robots

The current version of SARGE include three vehicles:
an ATRV-Jr., the USF Sea-RAI (a portable surface
vehicle for search and rescue and security operations),
and the iSensys IP3 (a small R/C helicopter based
UAV). The ATRV-Jr. carries a typical complement of
sensors including a compass, IMU, GPS, camera, and
laser range finder. The Sea-RAI carries a similar sensor
suite. The IP3 has a limited carrying capacity, as such
it carries only two cameras. The simulated motors of
the robots work by applying forces and torques on the
vehicle. The motors are tuned so that the performance
of the simulated vehicles in terms of linear and angular
velocities are as close as possible to measured values
from corresponding real world vehicles.

D. Environments

SARGE includes four environments, both indoor and
outdoor. One environment is a model of the robot testing
and training facility being constructed at the University
of South Florida. The facility includes a 3 story tower,
a rubble-crushed car, and underground sewer pipes.
The second environment is based on a pier located in
Pensacola, Florida and covers several square kilometers
of the surrounding ocean. The third environment is a
100m x 100m x 100m empty room with yellow grid
lines spaced at roughly 1m intervals and was inspired
by the Star Trek “holodeck”. The fourth environment
was constructed to perform the analysis for this paper

and is a duplication of an area on the University of South
Florida campus near the Research Park.

IV. EXPERIMENTAL DESIGN

This section describes the experiment performed to
compare real world performance of an ATRV-Jr. to that
of a simulated ATRV-Jr. in a virtual version of the test
environment. The robot was tasked to autonomously fol-
low a series of waypoints through an open but weighted
area on its a priori map. The real environment contains
an area with many trees, to test the anomaly detection
behavior the trees were not included in the a priori map.
The robot would then report any anomalies found in
the area and reactively respond in a safe manner. The
robot should behave more cautiously (slow down) in
areas in which the map was marked as less traversable
as well as in areas that contain anomalies. This terrain
traversability measure would ideally be measured on the
fly using a sensor and the map updated accordingly,
however the sensor that was to be used for this was not
complete at the time of the experiment. This scenario
forces multiple unplanned deviations from the given
route which would significantly affect the results if the
simulator does not accurately represent the real world.

As described in Section III, the SARGE environments
are constructed using GoogleEarth images, which are
typically accurate to less than 1 meter, as templates for
accurate placement of objects. While GoogleEarth has
been show to have positioning errors far larger in some
cases, the GoogleEarth reported GPS coordinates were
verified with a hand held GPS unit. Additionally since
buildings are placed visually by hand, even environments
that cover several square-kilometers will have buildings
placed correctly relative to one another. SARGE uses
a single reference point in the simulated environment
which is tagged with a real-world GPS location to
calculate the GPS coordinates and heading of robots. It
is this design method that the experiment was designed
to validate by showing that the simulated robot travels
along the same path as the real robot in roughly the same
amount of time. Both the real robot and the simulated
robot run the Distributed Field Robotics Architecture
[13], which allows the same navigation behaviors to be
used on both.

The first step in validating the design method was to
duplicate our outdoor testing environment in the simu-
lator. The environment is located on the University of
South Florida campus next to the Research Park parking
lot. Figure 1 shows the reference point in GoogleEarth.
The interested reader can point GoogleEarth or other
mapping software to 28.05711 N by 82.41460 W to
examine the area in greater detail.

The second step in the validation process was to
determine the path the robot should take. We chose a
path that would activate both the obstacle avoidance and
caution behaviors on the robot to force reactive course
corrections. These course corrections should happen
at roughly the same point in the both paths if the
virtual environment is a reasonable facsimile of the real
environment. Figure 1 shows the path the robot will
be directed to follow. The MoveToWaypoint (MTW)
behavior in DFRA will be responsible for moving the
robot to each of the given waypoints. MTW uses a
threshold value of Sm for stopping the robot at a given
waypoint. This may seem like a rather large value,
however this is to allow for slight drift in the waypoint
location due to GPS error and to prevent the robot from
wandering if a waypoint is partially inside an obstacle.

The next step was to conduct the experiment in the
real-world as well as in simulation while logging the
robots heading and position along with a timestamp.
This data allows us to later calculate the difference in
position and velocity between the real robot and the
simulated robot. To conduct the experiment the robot
was placed in the environment and instructed to drive
to the starting point. A script was then executed to
command the robot to travel to each waypoint in the
path in order. As the robot travels along the route it
marks anomalies on its map, slows down and reactively
avoids the anomaly. The data was logged using a DFRA
service that listens for messages from the sensor services
on the robot. The sensor data is then stored in a mySQL
database. A set of PHP scripts is then used to create a
GoogleEarth KML file from the sensor logs for later
analysis.

V. DATA ANALYSIS

This section describes how the pose data logged
during the experiment was analyzed. Using a Perl script
each pose point and corresponding time stamp was
extracted from the KML files used by GoogleEarth.
The pose points were saved into a comma separated
file and passed to another Perl script which computed
the average velocities of each robot and the similarity
between path taken by the simulated robot and that of
the real robot.

To compute the average velocity of a robot the ve-
locity between each pose point along the path' was
calculated. The average of these velocities was taken to
be the average robot velocity. The distance between each
point along the path must be known for this calculation,

IPose points that were closer than 0.2m were ignored to eliminate
points during times when the robot was stopped.

however the raw pose data contains the robots position in
decimal degrees and thus the difference between these
points is also in decimal degrees. This difference was
converted to a distance for easy readability using the
following formula.

distance = 6378137.0 * cos(lat) * & (1)

8 =V (Pliat — P21at)® + Plion — P21on)> ()

Equation 1 calculates the distance between GPS co-
ordinates in meters as follows: 6378137.0 is the radius
of the earth at the equator in meters, which is multiplied
by the cosine of the latitude of the reading to get the
nominal radius of the earth at the current latitude. This
is then multiplied by the angle between points measured
in radians §, which is shown in 2. This gives the distance
in meters.

To compare the similarity of the two paths we again
use Equation 1. For each point in the real robot path
the script identifies the closest point in the simulated
robot path based the distances found using Equation 1.
From this list of matching points we find the maximum,
minimum, and average distances along with the variance
and standard deviation. The standard deviation is used
to then recalculate the average after pruning distances
which are greater than 2¢. This pruning was done to
eliminate a set of points which were known to be caused
by GPS error. These points can be seen in Figure 2 Pose
158 through 166 are caused by GPS error as during this
time the robot was stopped under the tree at the “Under
Tree” waypoint.

VI. RESULTS

The analysis of the logged sensor data show that the
performance of the simulated robot in the simulated en-
vironment matches that of the real vehicle within the 3m
error tolerance of GPS. This experiment was repeated
5 times. During each run, the real robot maintained the
same path within 3m, which is the expected performance
based on the use of GPS for positioning. The simulated
robot maintained the same path within 0.5m because
the simulated GPS reports perfect position information
every time step. For the following analysis we focus
the run corresponding to Figure 2. These results are
consistent with the results from the other runs.

The maximum deviation between the two paths as
measured between closest points is less than 1.51m
(0=1.35) and if we remove several outliers caused by
GPS drift when the robot was stopped under trees the
average deviation is less reduced by more than half to

Ref Point
® | Ref. Point

Spawn Point

B, *Google"

Fig. 1.
in SARGE.

0.71m. The velocity of the simulated robot matched
that of the real robot within 7% with the simulated
robot traveling at an average of 1.06m/s while the
real robot traveled at an average of 0.99m/s. Figure 2
shows the recorded positions of the robots. The red
markers represent the real robot while the blue markers
represent the simulated robot. Note that all distances are
measured using the GoogleEarth measurement tool and
the positions logged from the experiment.

At the start of the experiment the robots were com-
manded to drive to the starting location, this is labeled
“Spawn Point” in Figure 1 and Figure 2. After driving
autonomously to the starting point the simulated robot
began 2.1m from the intended position which is within
the 5Sm threshold of DFRAs MoveToWaypoint behavior.
After driving autonomously to the starting point the real
robot began 6.6m from the intended postion, which is
outside the Sm threshold of DFRAs MoveToWaypoint
behavior. This indicates that the GPS error in the field
during the experiment was between 1.6m and 4.5m.

As the script was executed the robots headed toward
the “Between Bushes” waypoint. The robots stopped
between the bushes, both within 5Sm of the waypoint.
The simulated robot stopped 2.08m from the waypoint
and the real robot stopped 2.88m from the waypoint.
The next waypoint the robots were sent to is the “Under
Tree” waypoint. The direct path would send the robot
through the middle of a large palmetto bush. The robots
initially head straight towards the bush and then reac-
tively avoid the bush as shown in Figure 2. The real
robot maintains a closer distance to the bush which may
indicate that the real laser is reporting that the robot is
farther away from the bush than it actually is due to
low reflectivity of the bush and the filtering algorithm
that ignores any non-consecutive points. In simulation

Under Tree

Spawn Point

This image shows the linear path between waypoints the real and simulated robots should follow as well as the reference point used

this is not a problem because the laser returns the exact
distance to hit point on the object for each ray plus or
minus a few millimeters of random error. As the robots
round the bush they head for but do not successfully
reach the “Under Tree” waypoint due to the caution
behavior being activated. As the robot enters the tree
line it reaches the less traversable area as marked on
its map and the robot slows down significantly as the
caution behavior activates.

The third waypoint, “Under Tree (near bush)” is 7m
from the previous waypoint. The robots are commanded
to head for this waypoint just before they reach “Under
Tree”. Because of the very slow speed both robots stop
just inside the Sm boundary. Finally the robots are sent
back to the initial location “Spawn Point”.

Again the real robot stays closer to the bush while
the simulated robot veers around it. The simulated robot
stops on exactly the same spot it started in (which is
2.1m from the waypoint). The real robot stopped 6.8m
from its initial starting point. This may have been caused
by the timer expiring a few seconds before it reached
the stopping location or because of GPS drift or a
combination of both. This is consistent with the data
analysis that shows the simulated robot is slightly faster
than the real robot.

VII. DISCUSSION AND SUMMARY

This paper presented the analysis of a validation ex-
periment for the Search and Rescue Game Environment
(SARGE), a new simulation environment that forms the
basis for a multiplayer robot operator training video
game. The validation experiment consisted of running a
real ATRV-Jr. in an outdoor environment and a simulated
ATRV-Jr. in a simulated version of that environment.
The robots were tasked to move around a series of

Pose 159 Pose 158

Pose 161 (. Pose 160

Pose 165 Pose 164

Pose 118

Pose 120Pose 1'13
Bose 119

Pose 166
Pose 174

Pose 129
Rose 139

Pose 192 Pose 193

Pose 184 Pose 237
Pose 243 .
Pose 246
Pose 258 Pose 257
Pose 260
Poser222

Under Tree (near bush)
Pose 221
Posel226),, ~ RSieRs
Pose 229
Pose 233
Pose 238
Pose 241
Pose 243

Pose 245

" POSeplZ6i .

Pose 111

Pose 261
Pose2biPose 269

POSep27 1

Pose 250

1'5EE
4:25pm

Pose 'l

Pose 108

Pose 1'18

Pose 97
Pose 95

Pose 94 Pose 93

Pose m;‘ose s
(% pose BP0sE wbetween Bushes
Pose 103 : g
Pose 81 Pose 78
Pose 42
Pose 43
Pose 39 Pose 27
Pose 26 -
Pose 38
Pose 35
Pose 274
Pose 329 Pose 24
A ST
S ose 23 *
Pose 246 £ Pose 22
Pose 21
Pose 20

Pose 249

Pose 251 -
Pose 255 Pose 19 Pose 18
POSe. 257 =

Pose 10 Pose 14

2008 Europa Technologies

Pose®l2-Spawn Point

Fig. 2. A comparison of poses. The simulated robot’s positions are marked in blue while the real robot’s positions are marked in red.

waypoints in an anomaly detection task. The anomaly
detection task consisted of the robot following a pre-
planned path using what it understood to be a good
map; anything that was not on the map was considered
an anomaly. When the robot encountered an anomaly, it
would change its behavior to be more cautious (slow
down), which is shown as the robot approaches the
group of trees (anomalies) to the west of the test area.
The similarity between the real and simulated paths
was computed along with the average velocity of the
robot based on the pose data recorded during the run.
The analysis showed that the simulated robot traced the
same path as the real robot with an average deviation of
0.7m. The simulated robot was 0.08m/s faster (7%) than
the real robot based on the calculated average velocity.
These results are very promising despite only performing
5 runs.

In all five runs the robots consistently performed as
expected. Due to the setup time needed to perform
outdoor experiments, coupled with Florida’s weather we
determined the results from the first five experiments

were good enough for our purpose of validating our
world construction method and the physics model of
the ATRV-Jr. The buildings and other objects within
the simulated environment were placed within 1m of
the real world location using our visual construction
method using georeferenced GoogleEarth images. While
validation of SARGE’s other environments would be
beneficial to showing that these environments also are
a good representation of their real world counterparts,
the environments either do not exist yet as in the case
of the USF Testbed, or are very far from our location
as in the case of the Pensacola pier. As well, since the
main purpose of SARGE is to be a video game, perfect
accuracy is not necessary, buildings that are placed
“close enough” to their real locations are sufficient.

Now to focus on the path disparity. Figure 2 shows
the starting location of the robots in the bottom right
corner of the image. As mentioned in Section IV DFRA
uses a Sm radius around a target waypoint for a stopping
condition. The simulated robot begins and ends almost
on top of the location marker. On the other hand the real

robot is several meters away. This caused the path of the
robots as they travel due North from the starting point
to be 3m apart. Once the mid point is reached the paths
begin to converge. The initial discrepancy may be due
to wheel slippage caused by the sandy environment. The
sand causes unpredictable wheel slippage which cannot
be simulated to the degree that it occurs in the real world.
This will affect the average speed of the vehicle.

Greater than 3m of error is likely when objects
interfere with a GPS signal as can be seen in the top
left of the image where the trees interfere with reception,
however typical accuracy with an open view of the sky
is about 1m. During the test runs we noted the predicted
GPS error as reported by a handheld device to be less
than 2m. The GPS error combined with DFRA’s 5m
stopping radius explain the discrepancy between the
staring and stopping locations of the real vs. simulated
vehicle. Up to 1m of error may be attributed to the use
of GoogleEarth images due to the lack of resolution in
the images. This does not appear to be the major cause
of error however.

It appears that the largest cause for the path deviation
is the obstacle avoidance behavior and its input sensor
the SICK LMS 200 planar laser. The bush in the center
of the image required the robot to deviate from its
planned path while traveling both North-West (NW) and
South-East (SE). The simulated robot avoided the bush
when it approached within Sm while traveling NW and
avoided the bush when approaching with 6.7m while
traveling SE. The real robot approached within 1.7m of
the edge of the bush before avoiding it when traveling
NW and did not attempt to avoid the bush when traveling
SE, despite approaching within 2.6m. This caused the
real robot to take a path that was roughly 3m away
from the simulated robots path while traveling to the
SE. This error is caused by the lower reflectivity of the
plant material which is not simulated in SARGE.

This shows that SARGE does accurately represent the
environment and that it can duplicate the performance of
a real vehicle within a small tolerance as measured by
GPS. One may argue that GPS is not ideal for this type
of measurement and that odometry may be better suited.
However we used GPS because that is what is used in
DFRA for robot localization at the time the experiments
were conducted. While a fused GPS + Odometry system
may be more accurate for localizing robots we were
comparing DFRA + GPS running on a real robot to
DFRA + GPS running in simulation and believe this
is a fair comparison. Odometry alone would not be any
better than GPS, instead of a bounded error around each
point we would have an accumulated error, which due

to the slippage in the sand would be extremely large.

Future work will continue to test SARGE’s physics
system with additional robots in both simulated indoor
and outdoor environments. However, our main focus
with SARGE will be on enhancing the feature set related
to gaming and intelligent tutoring, then using it to
conduct experiments with human operators to identify
the utility of training with games for distributed, team-
based robot operation.

REFERENCES

[1] “Webots,” http://www.cyberbotics.com/products/webots/. [On-
line]. Available: http://www.cyberbotics.com/products/webots/

[2] “Usarsim,” http://usarsim.sourceforge.net/. [Online]. Available:
http://usarsim.sourceforge.net/

[3] “Simrobot,” http://www.informatik.uni-bremen.de/simrobot/.
[Online]. Available: http://www.informatik.uni-bremen.de/
simrobot/

[4] “Player/stage/gazebo,” http://sourceforge.net/projects/playerstage.
[Online]. Available: http://sourceforge.net/projects/playerstage

[5] “Microsoft robotics studio,” http://msdn.microsoft.com/robotics/.
[Online]. Available: http://msdn.microsoft.com/robotics/

[6] C. Fabricatore, “Learning and videogames: An unexplored syn-
ergy,” in The International Conference of the Association for
Educational Communicataions and Technology (AECT), 2000.

[71 M. Pivec, O. Dziabenko, and I. Schinnerl, “Aspects of game-
based learning,” in Third International Conference on Knowledge
Management (I-KNOW 2003), 2003, pp. 216-225.

[8] B. Chamberlin, “Creating entertaining games with educational
content: Case studies of user experiences with the children’s
website, food detectives fight bac!” Ph.D. dissertation, University
of Virginia, May 2003.

[9] A. L. Aitkin, “Playing at reality: Exploring the potential of the
digital game as a medium for science communicaiton,” Ph.D.
dissertation, The Australian National University, October 2004.

[10] J. Craighead, R. Murphy, J. Burke, and B. Goldiez, “A survey of
commercial and open source unmanned vehicle simulators,” in
Proceedings of the 2007 International Conference on Robotics
and Automation (ICRA), April 2007, p. 852.

[11] J. Wang, M. Lewis, S. Hughes, M. Koes, and S. Carpin, “Vali-
dating usarsim for use in hri research,” Proceedings of the 49th
Annual Meeting of the Human Factors and Ergonomics Society,
September, 2005.

[12] S. Carpin, J. Wang, M. Lewis, A. Birk, and A. Jacoff, “High
fidelity tools for rescue robotics: Results and perspectives,”
Proceedings of the Robocup 2005 Symposium, 2005.

[13] M. Long, “Creating a Distributed Field Robot Architecture for
Multiple Robots,” Master’s thesis, University of South Florida,
2004.

