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Abstract This paper discusses a new real-time fractal path analysis (RTFPA) al-

gorithm and its use in assessing the skill of robot operators. Twenty-five volunteers

participated in an experiment to evaluate the use of the RTFPA algorithm as a metric

for robot operator skill in a search task. The algorithm was used to estimate the frac-

tal dimension of a path taken by a simulated, tele-operated Inuktun Extreme VGTV

within a game-based training environment. The results show that within the sample

population there exists a curvilinear relationship between fractal dimension and score.

This relationship seems to indicate that when used along with score, fractal dimension

can be used as a measure of an operator’s search strategy and ability to maintain situa-

tional awareness. An additional analysis confirms the results of prior work showing that

there is no evidence of a relationship between fractal dimension and task completion

time. Additionally, a detailed description and pseudo code for the RTFPA algorithm

are presented and the accuracy of RTFPA is compared to existing fractal path analysis

algorithms.

Keywords Fractal dimension · Human-robot interaction · Teleoperation · Training ·
Video games
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1 Introduction

When training robot operators for search and rescue tasks it may be beneficial to

have a measure of the effectiveness of a trainee’s search strategy. A typical metric for

Jeffrey Craighead, PhD
James A. Haley Veterans Hospital
HSR&D/RR&D Center of Excellence
8900 Grand Oak Circle
Tampa, Florida 33637
USA
Tel: +001-813-558-3903
Fax: +001-813-558-3994
E-mail: Jeffrey.Craighead@va.gov



2

measuring an operator’s skill and/or search strategy is simply the number of objects

identified while conducting a search (a score). While this is a useful metric, it is naive

in that it does not indicate how a particular search strategy covers an open space. This

paper proposes the use of the fractal dimension (D) of the robot’s path as an indicator

of search strategy and ability to maintain situational awareness.

The term fractal as it appears in this work is defined as an abbreviation of “frac-

tional dimension”, coined by Benoit Mandelbrot in his 1967 article “How Long Is the

Coast of Britain? Statistical Self-Similarity and Fractional Dimension” [8]. A fractional

dimension is used to describe the variation in a surface or line when examined at vary-

ing spatial scales (magnification levels). A seemingly smooth surface may be very rough

when magnified or a rough surface may also appear similarly rough on a smaller scale

(self similarity). For instance, Mandlebrot’s article posits that the coastline of Britain

will be significantly longer if measured in millimeters versus kilometers due to the self-

similar nature of coastline. This intuitively makes sense, by using millimeters as the

unit of measure significantly more of the variation in the surface can be included in

the measurement. The fractal dimension is computed by comparing the measurement

of a line or surface at multiple scales. A truly straight line has a fractal dimension

of 1, while a line that crosses a plane enough times to completely cover the surface

(i.e. follows a Brownian motion) has a fractal dimension of 2, thus when describing the

fractal dimension of a line 1 <= D <= 2. Fractal dimensions can also be applied to the

three dimensional analysis of surfaces such that the fractal dimension 2 <= D <= 3.

Figure 1 shows an example of several paths and the associated fractal dimensions. The

limits only hold for fractals that are generated to be perfect recursive patterns and that

the step length is a multiple of both minimum and maximum dividers. It should be

noted that the estimated fractal dimension can increase past the theoretical upper limit

and dip below the lower limit depending on the size difference between the minimum

and maximum divider; the greater the difference, the more likely that a very tortuous

path will yield D > 2.

This paper discusses the implementation of a real-time fractal path analysis (RTFPA)

algorithm which was used to examine the relationship between fractal dimension and

a robot operators skill level in a training video game. It was hypothesized that a more

skilled operator would have higher situational awareness and a better understanding

of how to navigate the robot in a given environment; and that a skilled operator would

cover more of the search area within the given time limit. An experiment was con-

ducted in which 25 participants played a robot training game (SARGE) [4] for one

hour. During their training the RTFPA algorithm recorded their paths and fractal di-

mensions. The results show that D is curvilinearly related to a participants score, that

D seems to indicate how well an area was searched and that D is not correlated with

task completion time.

2 Related Work

Fractal dimension has been used recently to study the behavior of animals [7, 9, 15].

By classifying their path tortuosity (how convoluted the animal’s movement is over

time) with a fractal dimension it becomes easier to compare the territorial behaviors

of different species and individual animals. Voshell, Phillips, and Woods [11, 12, 13]

used path tortuosity measured by fractal dimension to compare the effectiveness of

two robot user interfaces. Bae, Voyles, et al. [1, 14] used fractal dimension to compare
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Fig. 1 Example of Path Tortuosity. This figure was adapted from [11].

the effectiveness of standard computer input devices to a wearable glove input device.

In the Voshell studies, operators of a robot with a folded perspective display were

shown to navigate the robot through a simulated environment towards a specific point

more smoothly than operators with a standard video display. The smoother paths

resulted in lower fractal dimension values. The papers suggest that the lower fractal

dimension (tortuosity) of the path indicates that the operators had higher situational

awareness when using the folded perspective display, thus were able to reach the goal

quicker with less searching. The papers did not indicate what spatial scales were used

when calculating the fractal dimension of a path, nor did they state the number of

participants involved in the study. The Bae and Voyles studies used a total of 43

participants and show that path tortuosity as measured by fractal dimension tends to

be positively correlated with the task completion time metric for a specific movement

task. The participants were directed to drive a robot between two visible points without

hitting an obstacle placed between the two points using the various input devices. This

is in contrast to the work presented in this paper which directed the participants to

search an unknown area for important objects.

A similar measure of path complexity, the Lyapunov exponent, has been used to

show how path complexity is related to the performance of humans searching a maze

[3]. While fractal dimension is a scaleless measure of path complexity in the spatial

domain, the Lyapunov exponent is a scaleless measure of the rate of divergence of two

trajectories in a dynamical system. Generally the Lyapunov exponent is used to assess

the predictability of a system, in this case it is used to measure path tortuosity in the

time domain (i.e. measure if the path likely to stay on the same course). A positive

Lyapunov exponent indicates a chaotic path while a negative exponent indicates a

smooth path. Clarke, et al.’s experiment involved 120 participants who wore tracking

equipment and searched a 5m x 7m maze constructed in a lab. The results showed that

the participants who’s paths were most chaotic (positive Lyapunov exponent) were
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able to find all of the hidden items in the maze in a much shorter period of time than

the participants who’s paths were smooth (negative Lyapunov exponent).

At first glance it seems that the works of Voshell and Clarke contradict each other,

one shows that a less complex path is related to higher performance and the other

shows that a more complex path is related to higher performance. However, the works

actually support each other. In the Voshell study the operators were directed to go

from point A to point B within the environment; the Clarke study asked participants

to completely search a maze for small tags. These goals are two sides of the same coin,

one rewarded traveling in a smooth path (direct travel between points) while the other

rewarded chaotic movement (complete coverage in a search).

3 RTFPA Algorithm

Fractal path analysis was chosen over the Lyapunov exponent because it is concep-

tually simpler yet measures the same physical property, path tortuosity. As noted

in Section 1 Mandelbrot introduced a fractal path analysis algorithm in 1967 which

is commonly referred to as the divider method. Since then, there have been several

works that have made incremental improvements to the estimates generated by the

divider method. In the following subsections the reader will be introduced to the di-

vider method (Section 3.1) before discussing improvements to the divider method that

have been introduced in the literature (Section 3.2). Finally a the reader will find a

discussion of the RTFPA algorithm (Section 3.3), a pseudo code example (Section 3.4),

a discussion of the author’s implementation (Section 3.5), and a step-by-step example

(Section 3.6).

3.1 Divider Method

The following subsection describes the original divider method as proposed by Man-

delbrot to give the reader knowledge of the algorithm on which RTFPA is based. The

easiest way to understand this method is to imagine you are given a sheet of paper

with a squiggly line drawn on it. Imagine you are also provided a dividing compass

(see Figure 2) marked such that you can adjust the radius to a known “divider size”

(also called “spatial scale”). Your task is to estimate the length of the squiggly line

using the compass. You do this by placing one end of the compass at the start of the

line and rotating it around until the other end intersects a point further down the line.

This point of intersection becomes the new starting point. You continue to walk the

compass in this manner, summing the radii, until you reach a point where the compass

no longer intersects the line. The sum of the radii is the estimate of the path length.

To calculate the fractal dimension (D) of the line you must estimate the length

of the squiggly line at least two times, using different spatial scales. Intuitively, the

estimate obtained using the shorter spatial scale is more accurate and correspondingly

longer spatial scales tend to be less accurate, underestimating the actual path length.

It is this error in the estimate that allows us to calculate D. After you obtain two or

more path length estimates, plot the estimates and corresponding spatial scales on a

log-log graph. Next, calculate the slope of the log-log plot using Equations 1,2 and

3. Finally, the estimated D value for the line is given by Equation 4. Figure 5 shows

how dividers of different sizes are used to estimate the length of a line and provides an
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example of path length underestimation. It is clearly seen in the figure that a larger

spatial scale can significantly underestimate the length of a path when compared to a

smaller spatial scale.

δDistance = log(shortEstimate) − log(longEstimate) (1)

δDivider = log(shortDivider) − log(longDivider) (2)

slope = deltaDistance/deltaDivider (3)

D = 1 − slope (4)

Fig. 2 A drafting compass. Photograph provided by vivekrajkanhangad via flickr.com under
a Creative Commons license.

3.2 Improving the Accuracy of the Divider Method

With [15] introduced the Averaging method in 1994, which averages the D values

found using the divider method from several different starting locations along a path.

For example, if the path consisted of a series of waypoints visited by a robot, the

Averaging method would run the divider method over the path starting from the first,

second and third waypoints and then return the average of those results.

Nams [9] has made several contributions, including two methods he termed DMean

and AdjustedD. DMean performs one forward path analysis and one reverse path
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analysis using the divider method and averages the results. The reverse path analysis

simply uses the final point of the path as the starting point and walks towards the first

point of the path. The AdjustedD method can be used in conjunction with any divider

based analysis. The AdjustedD method adds the remaining distance from the last

intersection of the walk to the last point on the path. This extra step slightly enhances

the path length estimate. In the same article Nams showed that both With’s Averaging

method as well as the DMean and AdjustedD methods provide better estimates of D

than the original implementation of the divider method. A combination of DMean and

AdjustedD provided the most accurate estimate and least variable estimates.

3.3 Discussion of RTFPA

The RTFPA algorithm has two distinct advantages over the previously published al-

gorithms and applications. The primary advantage is that it calculates D in real time

with O(1) space complexity. The only data required by the algorithm is the previous

location of the object being tracked, number of points in the path, the current path

length, and several additional placeholder variables are also kept in memory, Table 1 in

the following section provides a description of each variable used in the algorithm. This

is in contrast to Nams’ Fractal application and DMean algorithm which must keep the

entire path in memory so that a reverse traversal can be performed. If DMean were

to be used in a real time system it would have O(n2) time complexity, as every new

point would require the entire path to be traversed again in the reverse direction. As

the path length grows, updating D with every new point would quickly become too

costly to be performed in real time.

To make up for the accuracy lost by doing a forward only traversal, the RTFPA

algorithm makes use of a step-wise feedback loop to adjust the divider sizes that will

be used for the future points of the path. Remember, the fractal dimension of a path

is basically the slope of the line between plotted points of the estimated path length.

The idea behind adjusting the divider sizes is to increase the accuracy of the path

length estimate. RTFPA calculates two divider sizes using a user specified minimum

and maximum multiplier value and the mean distance between points on the path.

The mean distance between points is the actual mean distance, as calculated using a

GPS or other sensing system, not an estimate. These divider sizes are adjusted with

every new point on the path. In practice this allows RTFPA to have a much more

accurate estimate of the path length using dividers that are a fixed multiple apart. By

estimating a suitable divider size, RTFPA can be used for people, animals, and vehicles

without any user input.

Preliminary work has shown this method to be superior to DMean in most cases.

Figure 3 shows the advantage of RTFPA’s automatic adjustment of spatial scales.

Each of the values on the horizontal axis belong to one of 16 zig-zag paths that were

generated to have a known D value. These paths were analyzed using both RTFPA

and DMean algorithms. The RTFPA analysis was performed using the tracking system

implementation as explained in Section 3.5 while the DMean analysis was performed

using Nams’ “Fractal” application. DMean was tested with various ranges of spatial

scales, number of dividers and with the automatic scale estimation enabled. The key

indicates the algorithm, spatial scale settings and number of dividers used for each

test. For example: MeanD0.5-10:3Div indicates the DMean algorithm with the spatial

scales set to 0.5 and 10 using 3 dividers. RTFPA does not indicate number of dividers
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or spatial scales since RTFPA only uses 2 dividers and automatically estimates the

spatial scales.

To generate the paths used for this test, Equation 5 was used which was originally

presented by Mandelbrot in [8]. Given a line segment of fixed length, one can divide

the segment into a number of pieces, this is the ratio. Each of these pieces has the

same fractional length of the original line segment, placed end to end they create a

line segment equal to the original. However, if additional pieces of the same fractional

length are added the line segment grows in length. The number of pieces in the new line

is defined by segments. If the start and end of the line segment are fixed on a plane then,

to accommodate the additional pieces, the line must become more tortuous. Figure 4

shows the generation of a path with a ratio set to five (5) and segments set to six (6).

D = log(segments)/log(ratio) (5)

Fig. 3 A comparison of the accuracy of RTFPA vs. Nams’ DMean as implemented in his
“Fractal” application. For the range of paths tested, the estimate generated by RTFPA (in-
verted triangle) is closest to the actual D of the path (no marker).

3.4 RTFPA Pseudo Code

The following pseudo code example shows the basic implementation for RTFPA. Vari-

ables are defined in Table 1. Because it is trivial to extend this code to average two
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Fig. 4 An example of generating paths using Equation 5.

or more D estimates and to enhance readability, the pseudo code example does not

include the steps needed to implement With’s Averaging method. The example code is

broken into four sub components. In the first block, the global parameters that define

the two multiplier values are set, 0.5 and 10 have proved to be good choices on several

studies.

The second block shows the data structure that holds the intermediate variables

needed as the algorithm walks along the path. In this example -1 is used to indicate

an initial value, however this is implementation dependent, there is no significance to

this choice.

The third block defines the function that actually calculates D. HandleNewPosition

takes a new position as an argument. From there the code first checks if the new position

is the first position on the path. If it is the first position in a path, the position and

number of steps values are set appropriately and HandleNewPosition returns, waiting

for a second position. Once a second position is passed to HandleNewPosition the

distance between this second position and the first position is checked to ensure that

duplicate position readings are not counted. Assuming the position is a valid new

position, the number of steps in the path is updated, followed by the actual path

length as determined by summing the distance between readings. These two values

allow the divider sizes used during the walk along the segment to be calculated. Once

these values are calculated, WalkPath is called which estimates the distance from the

end of the last walk to the new position. Following the path length estimation, the slope

of the Log-Log plot of the minimum and maximum path length estimates is found. This

value is then plugged into Equation 4. Finally, the position variable is updated with

the new position.

The fourth block defines the WalkPath function that is called from HandleNew-

Position. This function handles the walk from a starting point to an end point using

a divider of a specified radius. The function is a simple while loop that performs suc-

cessive line/sphere intersections and updating the starting point value as the walk

continues. The walk terminates when the distance from the starting point to the end

point is less than the defined radius. The code for the line/sphere intersection has

been omitted as this is fairly trivial to implement and can be found online. It should

be noted that the starting position is passed to this function by reference, thus the

position updates are propagated back to the minSphereCenter and maxSphereCenter

variables that are defined in the second block.

/******** SET GLOBAL PARAMETERS ********/
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double minMultiplier = 0.5

double maxMultiplier = 10

/******** INITIALIZE VARIABLES ********/

point3d minSphereCenter = {-1,-1,-1}

point3d maxSphereCenter = {-1,-1,-1}

point3d position = {-1,-1,-1}

double minPathLength = -1

double maxPathLength = -1

double realPathLength = -1

double minStepSize = -1

double maxStepSize = -1

double meanStepSize = -1

double fractalD = -1

int numberOfSteps = -1

/******** HANDLE NEW POSITION ********/

function HandleNewPosition(point3d newPosition)

if (numberOfSteps < 0)

position=newPosition

minSphereCenter = position

maxSphereCenter = position

numberOfSteps++

return

double distanceToLastPosition = Distance(position,newPosition)

if(distanceToLastPosition == 0)

return

numberOfSteps++

realPathLength += distanceToLastPosition

meanStepSize = realPathLength / numberOfSteps

minStepSize = meanStepSize * minMultiplier

maxStepSize = meanStepSize * maxMultiplier

minPathLength += WalkPath(minSphereCenter,newPosition,minStepSize)

maxPathLength += WalkPath(maxSphereCenter,newPosition,maxStepSize)

double logPathLengths = Log10(minPathLength) - Log10(maxPathLength)

double logDividerSizes = Log10(minStepSize) - Log10(maxStepSize)

D = 1.0 - logPathLengths / logDividerSizes;

position = newPosition

/******** WALK ALONG SEGMENT ********/

function WalkPath( start byref,end,radius)
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double distance = 0

while(Distance(start,end) > radius)

point3d intersection = LineSphereIntersection(start,end,radius)

if(intersection != {0,0,0})

distance += radius

startPoint = intersection

return distance

Table 1 Variable descriptions for the following pseudo code.

Variable Descriptions
Name Description
minMultiplier The user set value used to determine the minimum divider size.
maxMultiplier The user set value used to determine the maximum divider size.
minSphereCenter The position of the minimum divider as it walks the path.
maxSphereCenter The position of the maximum divider size as it walks the path.
position The most recent position handed to RTFPA (the current end of the

path).
numberOfSteps The number of steps taken from the start of the path. This is not the

number of position updates, updates for which the position does not
change are not counted as a step.

minPathLength The path length as estimated using the minimum divider.
maxPathLength The path length as estimated using the maximum divider.
realPathLength The actual path length. Calculated by summing the distances between

position updates.
meanStepSize The realPathLength divided by the numberOfSteps.
minStepSize The meanStepSize multiplied by the minMultiplier.
maxStepSize The meanStepSize multiplied by the maxMultiplier.
fractalD The current estimate of the fractal dimension of the path.

3.5 RTFPA Implementation & Benchmarking

The RTFPA algorithm as described in this article was implemented by the author in

C#. Two applications have been developed that make use of this code. One application

is the SARGE simulator described in Section 4, the other application is a tracking

system that monitors the locations of residents within an assisted living facility (ALF).

RTFPA is not built upon any pre-existing code. To the authors knowledge, there is

no open code base for fractal path analysis, however Nams provides a closed source

application [10] for fractal path analysis. The most current C# code for the RTFPA

algorithm is available from the author upon request. Unmaintained RTFPA code can

be obtained by downloading SARGE from the repository on SourceForge.com.

To benchmark the RTFPA code the author used the ALF position monitoring

application which has the capability to process position log files from a previous mon-

itoring application. A function call timer was added to the relevant class within this

application such that the time required to process a new location reading could be

measured. The timer used the .NET System.DateTime.Now.Ticks property (each Tick

represents 100 nanoseconds) to record the system time just before the function call for
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RTFPA to handle a new reading and just after that function returns. By placing the

timer at this point in the code, disk access time is removed from consideration.

Using a 2010 15” 2.66 GHz Core i7 MacBook Pro with 8GB of memory the appli-

cation processed a 197MB log file containing over 4 million entries, each representing a

location. The average time required to process a single location was 0.027 milliseconds.

3.6 Step-by-Step Example

This section provides the reader with a step-by-step walk through of the RTFPA algo-

rithm as it is used to analyze a simple raster path (Figure 6 (A)). After reading this

section one should understand each step in RTFPA algorithm and the reasons why

each step is taken. This will allow the reader to integrate the RTFPA algorithm into

their own work.

The RTFPA algorithm begins with an empty point set, path length equal to zero,

average step size equal to zero, minimum divider path length estimate equal to zero,

maximum divider path length estimate equal to zero, and step count equal to zero. The

multiplier values are set a priori by the user or programmer, in this example we will

use 0.5 for the minimum multiplier and 3 for the maximum multiplier as was used

in the experiment discussed in the previous sections. When the first position reading

is available it is stored in a current position variable as well as in a minimum sphere

center variable and maximum sphere center variable which are used when walking the

divider along the path.

At this point there is not enough information to estimate any path lengths so the

algorithm waits for the next sensor reading. As the second position is available current

position is moved to last postion and the new position is stored in current position.

At this point RTFPA increments the path length and step count variables, adding the

distance between current position and last position at each new position to path length

and increasing the step count by 1. In this example the robot has moved 1 meter, thus

path length now equals 1, additionally the average step size also equals 1. The average

step size is multiplied by the minimum multiplier and the maximum multiplier to get

the minimum divider and maximum divider sizes respectively. At this point minimum

divider equals 0.5 and maximum divider equals 3. Using these divider sizes RTFPA

walks along the path from positions indicated in the sphere center variables to current

position if the distance between the sphere center and current position greater than

or equal to the divider size. An estimate of the path length is generated using the

minimum and maximum dividers as they are walked along the path. These estimates

are stored in minimum divider estimate and maximum divider estimate.

As shown in Figure 6 (B) the minimum divider (0.5m) is small enough to walk

along the current path segment, however the maximum divider (3m) is larger than the

distance between maximum sphere center and current position. Without a path length

estimate generated by the maximum divider D cannot be calculated, so at this point

along the path D equals zero (0).

Once the robot reaches the next waypoint along the path (Figure 6 (C)) all variables

are updated such that path length equals 1.25 and average step size equals (1+0.25)/2 =

0.625 thus minimum divider equals 0.3125 and maximum divider equals 1.875. and a

walk from both the last minimum and maximum sphere centers is attempted. As shown

in the figure, neither the minimum or maximum dividers are smaller than the new path
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segment, thus new path length estimates cannot be updated and D remains equal to

zero.

In Figure 6 (D) the minimum divider is 0.375m and the maximum divider is 2.25m.

The minimum divider is able to walk along the path from the last minimum sphere

center to current position, however the walk does not reach current position as the

minimum divider is too large to intersect with the path segment that ends at current

position. The path length estimate using the minimum divider is 1.74m and the estimate

using the maximum divider is still 0m. Due to limited space the this example will skip

intermediate points on the path up to where the maximum divider intersects a path

segment.

Figure 6 (E) shows the minimum divider path estimate (indicated by the blue,

short-dashed line) which is 6.371m in length, the maximum divider path estimate (in-

dicated by the red, long-dashed line) is 1.875m in length. The current divider sizes at

this point are 0.3125m and 1.875m for the minimum and maximum dividers respec-

tively. Having a minimum and maximum path length estimate, D can be calculated

using the 1-slope formula which results in a value of 1.683.

For the final step this example will skip to the end of the path showing the remaining

steps taken by the minimum and maximum dividers and provide estimates of the path

length and D. The minimum divider is 0.32m and the maximum divider is 1.92m as the

robot reaches the end of the path. As shown in Figure 6 (F) the maximum divider does

not intersect the path at any point past the initial intersection shown in Figure 6 (E),

therefore the maximum divider path length estimate remains 1.875m. On the other

hand, the minimum divider has been able to walk along the path and nearly reaches

the end point. The minimum divider path length estimate is 12.17m. These estimates

result in a D equal to 2.04.

Had the path been long enough for the maximum divider to intersect twice or had

the multipliers been different the D estimate would change significantly. For instance

if the minimum and maximum multipliers had been 0.1 and 0.25 respectively the D

estimate for the line would be 1.0; thus it is important to pick the multiplier sizes care-

fully. The author is currently researching methods to automatically estimate multiplier

sizes on the fly to eliminate the need to set any parameters manually when using the

RTFPA algorithm.

4 Experiment

The experiment discussed in this work was conducted at both the main Texas A&M

University (TAMU) campus in College Station, Texas as well as the adjacent Disaster

City training facility over a four day period in May and June 2009. The SARGE multi-

player robot simulation game [5, 6] was used to train the participants in the operation

of an Inuktun Extreme VGTV for search tasks. Twenty-five volunteers participated in

the training sessions which took on average one hour per group of participants.

The training was divided into two parts. The first part introduced the player to

basic operation of the robot through a short scripted tutorial (Figure 7). The tasks

included basic robot control using the joystick, operation of the raise and camera tilt

mechanisms, obstacle traversal, and the use of the robots headlights lights and camera

zoom. The tutorial covered these topics in a series of mini-missions that presented

both internal and external views of the robot. (Figure 7) Bottom shows the robot

interface. In the top left corner are indicators for the raise and tilt of the robot. The real
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Fig. 5 In this example there are two measuring sticks, one is 4cm (red) and the other is 1cm
(green). If the path is measured using the 4cm stick by walking it along the path the measured
length is 16cm. If you estimate the end segment of the path that is shorter than 4cm the path
length is maybe 18.5cm. However, if the path is measured using the 1cm stick the path length
is 25cm. As is seen in the lower figure, even using the 1cm measuring device underestimates
the path length because it is not able to capture the fine details of the squiggly path.

Inuktun VGTV interface is similarly sparse, with the addition of a battery indicator.

Following the scripted tutorial the participants played two games that required them

to one, maneuver the robot towards waypoint markers and and avoid plastic cups

while following a zig-zag path (Figure 8), and two, navigate a series of steps to push

scattered plastic cups into a goal area (Figure 9). The games were timed and the score

and penalties were recorded for each game. The participants played each of the games

for a maximum of 15 minutes or until they chose to continue to the next game. After

a participant completed the first two games, they proceeded to play a search game

(Figure 10). The search game required the participants to locate ten objects related to

a human presence in a confined space within 20 minutes. The goal was to maneuver

the robot near each object, select it using the mouse, and then provide a description

using the keyboard. The objects that the player was required to find were: work boot,

clipboard, hard hat, rubber mallet, safety glasses, screw driver, soda can, tool box,

wrist watch, and work glove. The search game was completely dark except for the

robot head light and arcing sparks from downed power lines that flashed periodically.

The version of SARGE available on SourceForge.net includes these levels and source

materials.



14

Fig. 6 A raster path with an actual D of 1.22 calculated using the divider method (A). A
robot has localized itself at the start of a path (B). The robot has moved to the first waypoint
on the path. The blue circles indicate the minimum divider walking along the line. The large
red circle indicates the size of the maximum divider (C). As the robot moves along the raster
path RTFPA adjusts the divider sizes to better estimate the remaining path length (D-F).
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Fig. 7 This figure presents three screen shots of the SARGE VGTV tutorial. Top: A wide
angle shot of the entire course. Each target prompted the player with a different task and
instructions for accomplishing this task using the robot. Middle: An example task, the player
was directed to drive the robot over the 2x4. Bottom: At the end of the tutorial the player is
introduced to the robot’s camera system. This is the view that is used for the remainder of
the simulation.
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Fig. 8 This figure presents a plan view (left) and a screen shot (right) of the SARGE slalom
course. The player was required to navigate the robot on the road, collecting translucent
markers without hitting the cups.

Fig. 9 This figure presents a plan view (left) and a screen shot (right) of the SARGE step
room course. The player was required to push the cups into the goal area (bottom left of screen
shot) using the robot.

5 Results

To demonstrate the relationship between D and performance in practice, Figure 11

shows the paths for two players in one of the training game’s environments. In this

environment players were required to push plastic cups (red dots) towards the goal

area (the blue area in the upper right of the figure) while navigating the multilevel

steps and ramps. The robot’s starting location is shown (at position 0,3.5). The blue

path, belonging to User 14, has an estimated D value of 1.066 while the green path,

belonging to User 62 has an estimated D value of 1.20. Notice the area around the goal,

the green path is much more tortuous than the blue path; as well, in the area around

the cups the green path appears more tortuous.
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Fig. 10 This figure presents a plan view (left) and a screen shot (right) of the SARGE tunnel
search course. The player was required to find and identify ten items scattered through the
tunnel system. The red dots on the plan view indicate the placement of hidden objects. Note
that the brightness of the screen shot has been enhanced for print.

5.1 Fractal D’s Curvilinear Relationship with Score

The question answered by the experiment discussed in this paper is: Does the fractal

dimension of a tele-operated robots path indicate the skill of its operator when con-

ducting a search task? The hypothesis was that a the fractal dimension would have

a negative relationship with an operators skill. That is, D would decrease as an op-

erators skill increased. This hypothesis was based on the work of Voshell and Woods.

The results of the experiment showed that within the sample population there is a

curvilinear relationship between score and fractal dimension, not a linear relationship.

Figure 12 shows the curvilinear relationship between fractal dimension and the score

earned in the game. This relationship was tested using a non-linear regression with

F(2,23)=4.125, p=0.029 and R2=0.264. This curvilinear relationship supports both

work by Voshell and Woods [12] that indicates that a higher situational awareness

may be related to lower fractal dimensions (straighter paths) and additionally sup-

ports findings by Clarke and Goldiez [3] which indicates that a chaotic path, measured

using the Lyuoponov exponent, is related to higher search performance in a maze. At

the low to mid end of the scale increasing fractal dimension appears to be related to

an improvement in search score; however, as can be seen in the figure, a mean D value

greater than 1.125 is related to decreasing search score.

The relationship between fractal dimension and search score suggest that the data

supports the initial hypothesis and indicates that a lower fractal dimension is associated

with a drivers skill in operating a robot but that this relationship is non-linear; at fractal

dimensions below a certain point, search score increases which may indicate that as

fractal D peaks a driver becomes proficient at operating the vehicle and they search

more of the area; this effect is consistent with the findings of Clarke and Goldiez. At

D > 1.12 perhaps D continues to increase as the operator drives in an erratic pattern

due to the inability to maintain situational awareness. This would most likely cause

their score decreases because of the decreased understanding of the environment; this

effect is consistent with the work of Voshell and Woods.
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5.2 Fractal D’s Relationship with Prior Gaming Experience

A regression analysis of participants that were drivers in the training game was used to

test the relationship between fractal dimension and prior video gaming experience. The

regression shows that a drivers prior experience with games has an increasing linear

relationship with mean fractal dimension with F(1,22)=9.140, p=0.006 and R2=0.294.

That is as the participants’ self rated prior experience with video games increased the

mean fractal dimension for their search paths increased as well. Gaming experience

was rated on a scale of 1 to 5: 1 represented no experience, 5 represented expert.

Figure 13 shows the relationship between mean fractal dimension and experience with

video games. The peak fractal dimension at experience level 4 is roughly 1.13; this is

very close to the peak shown in Figure 12 (1.125). It should be noted that there were

only 2 participants that rated themselves as expert game players.

During the experiment, the author observed that the teams that generally followed

the Localize the robot, Observe the surrounding environment, look for Victims, Report

findings (LOVR) strategy scored the highest [2]. This finding is based on the visual

observation of the teams while they operated the robot. This strategy was not explained

or taught to the participants in any way, yet it appears that the more experienced game

players may have already learned a similar strategy. It is hypothesized that a successful

use of the LOVR strategy would produce a D value near the peak of the curve shown

in Figure 12.

5.3 Fractal D’s Independence of Task Completion Time

Two regression analyses were performed to test the relationship between task com-

pletion time and fractal dimension, one analysis compared the two measures for all

participants in the study while another analysis examined only those participants who

completed the task under the time limit. The results confirm the findings of Voyles,

et al. [14] that the fractal dimension metric is independent of task completion time.

In contrast to Voyles’ closed-ended task of maneuvering a robot between two points,

the search task assigned for the experiment conducted in this paper is open-ended.

The participants were unaware of both the layout of the environment and the location

of the items of interest. Figure 14 plots the D value versus the task completion time

for all 25 participants in the study. 9 of the participants completed the task in under

20 minutes, which was the maximum time allowed for the task. The regression that

included all of the participants had the following results: F(1,25)=0.012, p=0.914 and

R2 < 0.001. If the analysis is performed on only the 13 participants who completed the

task within the time limit, the results remain the same with F(1,8)=0.027, p=0.874

and R2=0.003. These analyses clearly show that there is no indication of a relationship

between the time to complete a task and fractal dimension.

6 Discussion and Conclusion

This article has presented the reader with a brief overview of the divider method for

fractal path analysis followed by a detailed explanation at a new real time fractal path

analysis algorithm (RTFPA) and its use in assessing the skill of robot operators.
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Fig. 11 This figure shows the paths for the participants with the lowest and highest fractal
dimension in one of the training levels of the game. The path for User 14 has a fractal dimension
of 1.066 while the path for User 62 has a fractal dimension of 1.20. The top right corner of the
figure is the goal area and the red dots are the initial locations of the objects that the users
pushed into the goal. The initial position of the robot can be seen at position (0,3.5).

The finding that the fractal dimension of a robot’s path does seem to be a useful

metric for measuring an operators search strategy within the training game suggests

that fractal D could be used as a qualifying metric in future training applications. D

could easily be used as an input to an intelligent tutoring system that teaches specific

robot operating strategies. Each strategy would likely have an optimal execution path

within an environment and this path would have an associated D value. The tutor could

then use this D value as a target for the trainee to reach, adjusting the intermediate

lessons to encourage the optimal operation in a specific sub-task.

Additionally, the non-linear relationship of fractal dimension to performance may

be indicative of the operating teams cognitive ability if measured over time. This in-

formation could be used as a possible indicator of fatigue along with some threshold

value which would allow an incident commander to relieve a team whos performance

is deteriorating. This assumes that the position of the robot can be tracked with suf-

ficient accuracy in the environment. In the case of unmanned ground vehicles (UGVs)

that operate in a collapsed structure location systems tend to be very inaccurate or
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Fig. 12 Mean Fractal Dimension vs. Training Search Score. This graph shows the non-linear
relationship (SearchScore = β0+β1D+β2D2) between a participants mean fractal dimension
(D) and their score in the training game. This relationship may indicate that there is a peak
D that indicates a thorough search strategy. Values of D higher than the peak may indicate
that an operator has decreased situational awareness and is struggling to localize themselves.
Further experimentation is needed to verify this theory.

completely unavailable, these robots will need to have sensors onboard that can localize

them within the environment in order to calculate an accurate D value.

Fractal path analysis (FPA) has the potential to provide additional information

for researchers working with spatial information. In the robotics domain FPA could

be used to compare various search and navigation algorithms, while RTFPA could

potentially be used to identify errors in navigation systems. Additionally, FPA could

be extended into the third dimension and be used for terrain analysis as part of a path

planning system.

The authors future work on the RTFPA algorithm will focus on an automated

method of selecting multipliers such that the min and max spatial scales will provide

D values that maximally differentiate monitored individuals and robots.
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Fig. 13 Mean Fractal D vs. Prior Gaming Experience. This graph shows the relationship be-
tween a trainees prior experience with video games and the mean fractal dimension calculated
during their training. The markers indicate the mean fractal dimension for each experience
level.

Fig. 14 This plot shows the relationship between fractal dimension and the time to complete
a search task. A linear regression shows that there is no evidence of a relationship between
these two metrics.
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