Automated Process for Unmanned Systems Controller
Implementation USING MATLAB

Daniel Ernst, Jeff Craighead, Kimon Valavanis

Department Computer Science and Engineering

University of South Florida

deernst@csee.usf.edu

Abstract — Unmanned aerial vehicles, or UAVs,
currently fly a large variety of missions usually centered
around reconnaissance. Because the flight patterns vary
for the particular type of mission, and a large variety of
UAV platforms exist—everything from small unmanned
airplanes to large helicopters such as the Yamaha R-MAX
—flight controllers must be changed to allow proper
control of the aircraft for the mission. Currently,
controllers are designed in a design package such as
MATLAB or SIMULINK and then implemented
seperately in code but these design methodologies cause
problems. When designing controllers in a programming
language, changes are often tedious, so producing a
working controller takes considerable time. MATLAB/
SIMULINK provides a GUI interface and SIMULINK
provides excellent testing capabilities, but no automated
method for converting a simple controller, such as a PID,
from MATLAB to implementation on a microcontroller
has been presented. To implement current in-house
controllers designed in MATLAB/SIMULINK, a system
consisting of Real-Time Workshop and a C to Assembly
compiler has been used to produce assembly code for a
target microcontroller. To aid in verification of the
MATLAB controllers and C code produced by Real-Time
Workshop, an interface for the controllers in SIMULINK
and a flight simulator (X-Plane) was created. While the
current conversion system has been developed for small
unmanned aerial vehicles with limited power, payload, and
processing capability, the process could be extended to
other platforms.

Index Terms — Controller Conversion, MATLAB, SIMULINK, X-
Plane, Unmanned System, Autopilot.

1. INTRODUCTION

MATLAB and SIMULINK are powerful system design
packages used by a wide variety of companies. The powerful
variety of toolboxes incorporated within these packages
provide an easy to use interface that allow rapid design—a

perfect method for quick and easy design of controls for
unmanned systems. By combining both easy and quick design
of controls within MATLAB/SIMULINK with a system
utilizing microcontrollers, plug-in/plug-out capabilities are
created allowing for easy reconfiguration of the unmanned
system for various mission tasks. Unfortunately, there is no
standard process for implementation of the controls. The

purpose of this paper is to describe a methodology that may be
used to implement three types of controllers designed in

MATLAB/SIMULINK on any type of unmanned system. To
ensure that individuals wanting to use this methodology may

do so with little or no background in programming controllers,
the steps for conversion will be kept as automated as possible.

Also, to provide an example implementation, an autopilot
PCB containing three different Microchip microcontrollers is

utilized. On the example PCB, one microcontroller controls
inputs and outputs to servos and provides a safety by allowing

control of the helicopter to be switched between the autopilot
board and the transmitter. A second microcontroller interfaces

with the GPS module on the PCB and the third
microcontroller interfaces with the IMU, GPS, and barometric

pressure sensor. Because the three microcontrollers are made
by Microchip, a respected company that produces a wide

variety of microcontrollers and microcontroller tools, a PIC-C
compiler generates the assembly code [1].

The three controllers developed in-house for implementation
on a small unmanned aerial vehicle include PID controllers,

fuzzy logic controllers, and LQR controllers. To develop the
controllers MATLAB was utilized in conjunction with

Simulink and the fuzzy logic toolbox. The PID controllers are
self contained in one Simulink model file, the fuzzy logic

controllers contain a Simulink model file and three fuzzy
inference system files, and the LQR controllers are

implemented in a Simulink model file with several Matlab
script files. While the PID controllers could be converted,

problems were encountered when converting the fuzzy
inference system because the compiler used to convert the

code could not interpret the fuzzy inference system files.

Thus, a set of fuzzy controllers developed in C will be used for
the fuzzy helicopter controls.

II. THE DESIGN PROCESS

Ideally, a complete design process would incorporate
selection of hardware before the controllers are designed in

MATLAB. This would aid in reducing the amount of code
written in C to convert units from sensor readings. Thus,

many hardware choices should be considered and chosen
based on the types of controllers to be implemented, cost, size,

necessary sensors, and processing capabilities. In addition, it
is imperative that the hardware chosen has good support base,

and the company that produces the hardware provides a
compiler to convert from C to assembly. Once the hardware

has been determined, controllers are designed using MATLAB
which cause the unmanned system to perform certain actions

—this allows for the plug-in/plug-out capabilities using the
automated process. Afterwards, the controllers are tested with

Simulink and X-plane for design verification. Next, the
controllers are converted to C using MATLAB’s Real-Time

Workshop, altered for the current hardware, tested again using
X-plane, converted to assembly, and implemented in the

hardware —these steps can be viewed in Figure 1.

Figure 1: Steps for €onversion

1. MATLAB/SIMULINK to C Conversion

To convert from MATLAB to C, an environment called
Real-Time Workshop provides automatic code generation. In
addition to providing the automatic C code generation, Real-
Time Workshop also provides several ways to optimize the
controllers for particular types of processors. Once a set of
controllers are opened in Simulink, the file must be “built”
using Real-Time Workshop. Before building, however,
several customizations must be made. First, Real-Time
Workshop must be selected under the configuration menu.
Next, the Solver option in the left box is chosen, and under
solver options, the “Type” box must be changed to Fixed-Step
for an embedded target. Because the controllers are
implemented on a microcontroller, the proper .tlc file will be
selected —information for proper selection can be determined
from the designer’s reference [2]. In the RTW system target
value, type ert.tlc, which causes Real-Time Workshop to
produce code targeted for embedded systems. Once this
filename has been entered, the options under Build process
should change. However, if they don’t, change the Template
makefile option to ert_default_tmf. The makefile option

allows for further customization for the processor such as

conversion for microcontroller enabled floating point or
integer operations (Figure 2). The PID controllers contain

floating point operations, but the main microcontroller does
not have floating point capabilities, so the default makefile is

selected. If the controllers created in MATLAB/SIMULINK
are created utilizing hardware not present in the particular

microcontroller, errors will occur when trying to generate the
C code for that particular controller. Thus when converting

controllers with floating point operations for a microcontroller
that does not contain a floating point unit, the fixed point tlc

file can not be chosen.

3 g
I =] configuration Parameters: OnlyControll 5‘_
T Select: - Target selecti f
E RTW system target fie: [erttie: Browse... o
Desciption: RTW Embedded Coder [n auta configuration) i
- Hardware Implemertation) L
. Model Referencing TLC options: [
£ RealTime Workshop Make command [make v (-
-~ Comment:
Py Template makefle: [ert_default_tmf
~Custom Code =
Debug n
~Interface [Ignore custom storage classes
~Templates
Data Placement T Generate code only Buid -
Hebp Apply

BTG Enbedded Code;
 ert.tic BTG Enbedded Coder (auto configure:

etele BTV Tabedded Coder (auto contigures for <

cevoeie Vicual G/CH Project Nakefile enly for b

reotie Genersc Beal-Time Targer

gt Vicual C/CH Project Hakefile enly for o

Generic Real-Time Target with dynanic mex

Visual C/CH Project Hakefile enly for j;,
] ,

Full name: CAMATLAB7OT\twAC\eniert i
Template make fl: ert_defaul_tnf
Make command: make_itw

Figure 2: Real-Time Workshop Setup

Next, the configuration menu must be opened and hardware
implementation selected. The pull-down menu next to
“Device type” contains optimizations for various processors
and microcontrollers. For the sample board, no Microchip
microcontrollers exist in the list, so the 8-bit generic processor
is selected (Figure 3). Once this has been selected, Real-Time
Workshop is selected again from the selection menu and the
“Build” button is pressed to start building the C files. The
only major difference between the way the controllers are
implemented occurs in the base step: the conversion from
Real-Time Workshop to C. While the PID controllers present
no problem in conversions, more complex designs such as
Fuzzy Logic or implementation of MATLAB script files
require extra time in getting them to work properly together.
Before converting the more advanced controllers, attempt to
fully implement the PID controllers as these are the easiest to
work with and provide a basis to implementing more complex

controllers. Figures 5, 6, and 7 show current controllers to be

converted and the steps necessary for each of these types of
controllers.

x
| {simuoto i
- Sobver Device lype: il Geneic) |
- Dats Import/Eiport Number of bite: | 15-bit Beneiic Embedded Processar -
£~ Optimizations Infineon C16x, XC16x
- Diagnostics Motorola HC{ST12
~Sample Time SThicioelectionics ST10
~Data ey Beodems | 1) copng
 Conversion : ossor
—Connestiviy Motorola BBHC1 1
- Compatibibty Motorola HCO8
W e 32bit Reai-Time Windows Target ~
- Model Referencing ¥ None
B~ ReakTime Warkshop
- Comments
—Symbols
- Custom Code
-Debug
~—Interface
~Templates
" Data Placement

o | o | Hee | aew

Figure 3: Microcontroller Selection

Realtme
Worlshop
Optimized C
Code

/

Optimize
|

Figure 4: Overall Real-Time Workshop Conversion

PIC.C Compile inglement
Cortroller Mode! File Code m Assembly Language m
Compie Board

> |

Figure 5: PID Controllers

Assembly Language

PIC C Compiles
mport Flles/Pin
C Code Fuzzy Controllers
Compile

Figure 6: Fuzzy Logic Controllers

MATLAB Scipt Files

Assembly Language

o = Realtime
: o

LOR Model

Figure 7: LQR Controllers

IVv. ASSEMBLY CODE GENERATION

Once the build has completed, Real-Time Workshop may be
closed and the PIC-C compiler may be opened to import the
files. Real-Time Workshop produces several different files
that attempt to tie the C files to MATLAB, so these files must
be imported into the PIC-C compiler for proper handling.
Figure 4 shows the files that were imported to the compiler for
conversion to assembly to provide an idea of which files need
importing from the Real-Time Workshop output directory. In
addition to the files located in the Real-Time Workshop output
directory, some data structures exist that must be interpreted
through the tmwtypes.h and rtwtypes.h files (Figure 8). While
these files are needed by the compiler, Real-Time Workshop
does not output these files to the same directory as the rest of
the files. Thus, these files must be located in the MATLAB
directory and copied into the Real-Time Workshop output
directory, and then imported into the PIC-C compiler— Figure
9 shows the flow control conversion. Now, all files are present
for compilation.

PCW C Compiler IDE

Fie Pioject Ei Opiions Compie View Todls Debug Help

o2 BREd | & |86 | §
H.n Eak Ay | =z == | @& e

PIDcontolerprcic | imwtypes | sinsie peshh | twtypes | iLnonfiteh | r nonfnte | OnlContoters ypes h| OriyConiolers pivaleh| OrCortiolersh_OnContoles. | e manc |

7=
* File: OnlyGontrollers.c
* Real-Time Workshop code generated for Simulink model OnlyControllers.

* Hodel version :1.3
* Real-Time Workshop file version 1 6.1 (R14SP1) B5-Sep-2004
= Real-Tine Workshop file generated on : Wed Mar 16 10:07:12 2065
* TLC version : 6.1 (Aug 24 2004)

* € source code generated on : Wed Mar 16 10:67:14 2065

* You can customize this banner by specifying a different template.
4

#include “OnlyControllers.h™

#include “OnlyControllers_private.h”

7% Block signals (auto storage) x/
BlockI0_OnlyControllers OnlyControllers_B;

/7% Continuous states =/
GontinuousStates_OnlyControllers OnlyGontrollers_X;

7% Block states (auto storage) =/
D_Work_OnlyGontrollers OnlyGontrollers_D¥ork;

7= External inputs (root inport signals with auto storage) =/
Externallnputs_OnlyControllers OnlyControllers_U;

Figure 8: Files Needed for Conversion

Next, modifications must be made to the C files to ensure
proper implementation on the microcontroller. First, a proper
schematic of the autopilot board should provide the pins that
the sensors are connected to. Once these pins are determined,
the pins are assigned on the microcontroller to the variable
names. Figure 10 shows the variables needed for the PID
controllers. In addition to providing pin assignments, the
outputs from the sensors may need to be converted to the
proper format to be handled by the microcontrollers. While
this conversion of data will vary depending on the design of
the controllers, most data conversion will include a GPS
parser, and conversion functions for the IMU and barometric
pressure sensor (If used). If more than one microcontroller is
utilized in the hardware, sensory input to the microcontroller
may already be properly formatted and only timing should be
dealt with (if this isn’t handled in the MATLAB/SIMULINK
Controllers. In addition, any alterations to sampling time
should be handled. Once these conversions are complete, the
assembly files can be generated and the chip programmed.

PIC C Compiler
importFiles /Pin
Assignments |
Compile

_

~ r ~
importMromntoller C
and Hoader Fleo/bmpert
RoalTime Workshop Fios |::> SotUp or AubpitUse |::> Genorate AsemblyCode
o PIC.C Gompter
Applicaton
// \

Domrmine e Vet Ooelop Drvers/ e Prson
Comvoter Datermine ve et it
Variables o Ll Appropriate

Contoller
Needing Input Variables

Inputs Outputson
from Sensors v Contollers

Figure 9: Overall Assembly Generation

#ifndef ODE1_INTG

#idefine ODE1_INTG

/= ODE1 Integration Data =/

typedef struct IntgData_tag {
real T *>f[1];

» ODE1_IntgData;

#endif

/% derivatives =/

7+ External inputs (root inport signals with auto storage) =/
jtypedef struct _Externallnputs_OnlyControllers_tag {

roll; ‘<Root>/roll’ =/
roll_s| *<Root>/roll_sp® =/
roll_trim; *<Root>/roll_trim" =/
pitch; *<Root>/pitch’ =7
pitch_sp; *<Root>/pitch_sp* =/
pitch_trim; *<Root>/pitch_trim® x/
yau; ‘{Root>/yauw’ =/
Height; '<Root>/Height' =/
yau_sp; ‘<Root>/yaw sp' =/
height_s *<Root>/height

pedal_; *<Root>/pedal |
height_trim; *<Root>/height_trim' =/
Externallnputs_OnlyControllers;

7= External outputs (root outports fed by signals with auto storage) =/
typedef struct _ExternalOutputs_OnlyControllers_tag {

- lateral; ‘<Root>/sig lateral' =/
real T sig_longitudinal; /= '<Root>/sig_longitudinal' =/
real T sig_pedal; /= '<Root>/sig_pedal® =/
real_T sig_collective; /* '<Root>/sig collective® =/
ExternalOutputs OnlyCentrollers;

/% Real-time Hodel Data Structure =/
struct _RT_HODEL_OnlyControllers Tag {
ransct char xerearStatns:

Figure 10: Exported Controller Variables

V. X-PLANE SIMULATION

To enable testing of controllers developed in MATLAB and
ensure proper conversion from MATLAB to C code, a aircraft
simulation environment was utilized. Similar to Microsoft’s
Flight Simulator, X-Plane provides extremely accurate flight
models—accurate enough to be used to train pilots—and also
allows external communication as well as airfoil design.
Because the sample PCB is an autopilot board to be used on
small unmanned helicopters, a model for a Yahmaha R-Max
and a Raptor 90 was created. Creation of these models were
based on specifications from actual helicopters, and then
verified to be accurate by an individual that flies these
helicopters. As noted in [3], X-Plane also provides future
capabilities that UAVs will need including navigation markers,
changing weather conditions, and air traffic control
communication.

X-Plane uses UDP communication to send and receive
data packets which allows changes to various values within X-
Plane. A large variety of values can be changed including
control of the aircraft as well as causing in flight failures. Two
different communication programs were created: a Java
program to allow for portability and a C program to
implement into Simulink with the controllers. Because the
inputs and outputs for the controllers will change depending
the type of the controller and for what it is used for, the needed
variables will be listed at the top along with the number of
variables needed [4]. Thus, the code can be easily changed to
accommodate changes to the controllers. The Java send and
receive functions are incorporated into the same file, but the C
files are split into send and receive functionality. The send and
receive design is shown in Figure 11.

Low Level X-Plane/MATLAB Interface

Controllers (PID, Fuzzy, LQR) |

Data to Data From
Controllers Centrollers

¢

Vi J\
Needed By Conversion Conversion

Pedal
(Yaw)

(=)
)

\
gly

Collective

T L L]

Form UDP Data
Packet for X-Plane
Control

Parse Data Into Structures

Display Data
Display Data
Packet Packet
Received
(Testing ;T‘*"“"G
Purposes Uposes.
Only) Only)

| ‘ Butter ‘

<L

Socket Connection ‘

<

UDP Data to X-Plane.

| Socket Connection I ’

UDP Data From X-Plane (variable
speed)

Figure 11: X-Plane/SIMULINK Communication

VI. RESULTS AND FUTURE WORK

Steps previously described to convert PID controllers
from MATLAB to assembly were successful although actual
testing using X-Plane has not been performed at this point.
Current, C code allows data to be received from X-plane, but
code for sending to X-plane is still under development.
Experiments with X-Plane and Java communication show data
can be received and sent. A sample script demonstrated
remote take-off and banking of a Cessna aircraft within X-
Plane. Future work will include finishing of the C code for X-
plane communication and testing of the converted PID
controllers as well as the PID controllers located within
MATLAB. Figure 12 shows the overall system view under
development.

REFERENCES

[1] Incorporated, C. C. S. (July 2005). C Compiler Reference Manual.
Brookfield. 2005.

[2] A. E. Fisher, D. W. E., and S. M. Ross (2001). Applied C: An Introduction
and More. New York, McGraw-Hill, 2001.

[3] Walker, I. M. a. R. (Aug. 16-19, 2004). Simulation for the Next Generation
of Civilian Airspace Integrated UAV Platforms. AIAA Modeling and
Simulation Technologies Conference and Exhibit, Providence, Rhode Island.

[4] Meyer, A. (2004). UDP Reference. 2005: X-Plane UDP Reference Manual.

OVERALL SYSTEM VIEW

Servo

L\
: 4

Servo
|
|
|
|
I
|
|
|
: 8 Outputs
PIC 18F1320 '\ PIC18F452| ——
Microchip 18F452
L Controls Servo Movements
—_— T Controls AutopilotTransmitter Mode
+ Microchip 18F1320 1 Micrachip 18F4620 . & Bit Microcontroller
! Parsing of GPS Dala H C_orltrulsr Imphrmmannq 40 MHz
! Storage of GPS Readings | Signals Autopilot/Transmitter Made
' | 8 Bit Microcontroller
' | 40 MHz
—_— e - — — — — N — — —— — — — |
'
; I
r |
| R 1
l]
! ! Futaba Receiver
| e
: 8 Inputs |
| Futre Add-ons 1 Matarela MPXAZ4100A
e 120 io 105 kPa
1 31049V
H
H
el ————

Figure 12: Overall System View

