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Smart rehabilitation for the 21st century: The Tampa
Smart Home for veterans with traumatic brain injury

INTRODUCTION

In this editorial, we report on the development of a smart-home—based
cognitive prosthetic that will deliver 24/7 rehabilitation at the James A.
Haley Veterans’ Hospital Polytrauma Transitional Rehabilitation Program
(PTRP) facility in Tampa, Florida. The Tampa Smart Home was designed to
address two weaknesses identified by PTRP clinicians in the rehabilitation
process for patients with traumatic brain injury (TBI): (1) patient safety and
(2) inadequate timing and repetition of prompts used to overcome TBI-
related cognitive and memory deficits.

Smart homes monitor residents’ behaviors and provide assistance for
various physical and neurological disabilities [1]. The Tampa Smart Home
creates a pervasive supportive environment to assist cognitive rehabilitation
in patients with TBI [2-3] by continuously identifying the movements and
locations of all patient residents and clinical staff. The location information
permits the intelligent software to deliver customized prompts and informa-
tion to the patient via numerous interactive multimedia displays located on
walls throughout the PTRP. The residential setting lends itself well to the
enriched interactive rehabilitative environment, in which patients with TBI
are “immersed” in their rehabilitation, and leverages the “digital generation”
of veterans’ active technology engagement to facilitate their own recovery [4].

A powerful feature of the Tampa Smart Home is the precision of the cus-
tomized therapeutic information that can be provided to the recovering vet-
eran. Individual-level data for every interaction with clinical and medical
staff and with the interactive displays are recorded continuously and ana-
lyzed using state-of-the-art data mining, which, when fully implemented,
will allow staff to visualize subtle but therapeutically significant behavioral
changes to better inform treatment plans and potentially prevent untoward
medication effects on veterans’ memory, as well as gait and balance. This
approach is expected to yield important insights into the cognitive recovery
process by assisting therapists in targeting problem behaviors for remedia-
tion and then linking the behaviors to automata that ensure consistently pro-
vided therapy. Consistently delivered automated interventions will shorten
recovery time while complementing or reducing therapist monitoring of
patient locations and activities within the facility.
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BACKGROUND AND RELATED WORK

Department of Veterans Affairs
Polytrauma Centers

The signature injuries of soldiers returning from
Afghanistan and Iraq are polytrauma and TBI [5-6].
In the majority of Department of Veterans Affairs
(VA) clinical cases, polytrauma and TBI are caused
by blast injuries from improvised explosive
devices, although TBI also results from noncombat
events such as motor vehicle accidents. Polytrauma
is defined as injuries to two or more body systems
from one event. An extreme example would be
injuries that simultaneously result in limb amputa-
tion, TBI, burns, deafness, and blindness, with
long-term physical and cognitive impairments and
functional disabilities.

TBI, while part of the constellation of injuries
encompassing polytrauma, is the most serious and
common injury [5]. The variable emotional, cogni-
tive, and behavioral consequences of TBI determine
the specific course of rehabilitation [3]. Mild inju-
ries, managed properly, have excellent recovery
prospects; moderate to severe injuries require spe-
cialized care and intensive early rehabilitation and
often require lifelong assistance to manage routine
daily activities.

The VA has four polytrauma centers that serve
as regional centers for medical and rehabilitation
care and hubs for research and education located in
Minneapolis, Minnesota; Palo Alto, California;
Richmond, Virginia; and Tampa, Florida. The com-
prehensive medical and rehabilitation services pro-
vided include acute medical care, outpatient
programs, and PTRPs.

The Tampa PTRP provides residential facilities
and supplemental therapy for 10 veterans with TBI
and aids their reintegration into the community. The
goal is to raise the veterans’ awareness of barriers
that interfere with their community reintegration
and develop strategies that allow them to indepen-
dently plan, organize, and complete important
everyday activities; length of stay varies from a few
months to more than a year.

Smart Home Rehabilitation Strategy

The most common deficits requiring rehabilita-
tion at the Tampa Smart Home relate to executive
functioning. Executive functioning refers to a set of
higher cognitive processes, which include proce-
dural sequential memory, attention and response
inhibition, and motivation [7-11]. Specific manifes-
tations of executive function deficits involve prob-
lems planning activities and managing time [12-
13]. Expressing inappropriate social behavior is a
major issue for many persons with TBI. Repeating
environmental cues that trigger specific behaviors
and cues to facilitate attention are crucial for thera-
peutic progress [6]. Growing neurophysiological
evidence supports the contention that task-specific
therapy involving repetition facilitates cortical reor-
ganization or neuroplasticity [14-22]. Little dis-
agreement exists that the therapies are effective and
facilitate change in neuronal connections, but empha-
sis has shifted to the factors and patient characteris-
tics that maximize clinical outcomes [23]. In animal
studies, exposure to long-term enriched environ-
ments has a positive effect on restoring spatial
memory functions. The functional recovery in rats
with brain injury involves highly complex processes
generating new cells and cellular alteration [24].

Unfortunately, extensive literature also docu-
ments that some cognitive functions such as mem-
ory cannot be restored, irrespective of amount or
intensity of repetition. In those cases, rehabilitation
focusing on establishing compensatory strategies
using a variety of low- to high-technology aids is
advocated [25]. These aids range from notebooks
and diaries to electronic aids such as personal digi-
tal assistants and pagers. Accordingly, implement-
ing a smart home at the Tampa PTRP that employs
both pervasive and persuasive technologies as a
cognitive prosthetic for patients with TBI is consis-
tent with its use as a compensatory strategy.

Persuasive Technologies

Persuasive technologies are human-machine
interactive systems designed to alter users’ abilities
to produce sustained behavior change either in
themselves or in others and are (ideally) sustainable
when the technology is removed [26]. Examples of
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sustained behavior change include achieving and
maintaining an ideal weight or an exercise program
in which the machine communicates motivational
messages and results. Our application employs sen-
sor technology to monitor a patient’s behavior
sequences, applies decision rules to detect key ele-
ments of the patient’s behavior pattern that have
been omitted, then finally prompts the patient to
resume the sequence at the point where it was
stalled or diverted. Depending on the desired
behavior, more specific prompts may be employed
(e.g., “Please resume loading the washing machine”
becomes “Pick up the next item of clothing and
place it in the washing machine”). Inherent in
prompting is tacit acknowledgement of the neces-
sity of maintaining motivation throughout the
behavior sequence by electronically delivering
approval (“Great job!”) at the correct instant. Yet
delivering too many approval messages may
become irritating and have unintended conse-
quences; prompts systematically delivered only
when the behavior is about to stall out may inad-
vertently contribute to progressively slower rates of
behavior (also termed a “Differential Reinforce-
ment for Low Rates of Behavior” schedule). The
behavioral effect of systematic variations in the
scheduled delivery of positive reinforcers is an area of
research pioneered by behaviorist B. F. Skinner [27].
For persons with TBI, the damage may be either
widespread or quite limited depending on the nature
of the injury. Whereas the hallmark characterizing
dementia is the decline in short-term memory, no
single defining characteristic of TBI exists—each
case is unique. The intent of the Tampa Smart
Home is to harness the power of pervasive, persua-
sive computing to rehabilitate damaged brains by
building behavioral profiles for each patient that
will track his or her progress on specific tasks nec-
essary for independent living. The stability of a
patient’s relearned behavioral sequences can be
measured in a number of ways, including probabil-
ity of successful completion, and improved stability
should accompany improvement in other com-
monly used clinical indices of a patient’s progress.
Ideally, patients with TBI who have undergone
“smart home rehabilitation” would be weaned off
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prompts used to reestablish the behavior as they
transition to a minimally or noninstrumented inde-
pendent living environment. Home service provid-
ers can provide feedback to clinicians as to how
effectively the behaviors modified by the clinic’s
smart home rehabilitation protocol are maintained.

SMART HOME ARCHITECTURE

The architecture of the smart home is organized
around a central Linux server running the standard
Ubisense core platform services (Ubisense Ltd;
Cambridge, England). As of this writing, the Tampa
Smart Home is specifically running Suse Linux version
11.3 (open SUSE Project, Novel, Inc; Alpharetta,
Georgia) and the Ubisense Platform version 2.17.
The Ubisense core platform services feed a wide
range of applications with location data; many of
these applications are written as Ubisense services
to take advantage of the runtime monitor and data
schemas that provide a convenient means of distrib-
uting data to all of the client devices. Figure 1
shows six major components running on the server:
schedule monitor, prompt generator, real-time frac-
tal dimension (Fractal D) path analysis, behavior
tracking, database (MySQL, Oracle; Redwood
Shores, California) logging and post hoc analysis of
patient behaviors and interactions, and .NET Web
service to wrap portions of the Ubisense application
programming interface (API) to provide access for
10S (Apple, Inc; Cupertino, California) and Android
(Google, Inc; Menlo Park, California) devices.

The environmental sensor units are comprised
of a task-specific sensor, such as a pressure sensor
or a light sensor, connected to an ARM microcon-
troller, which is in turn connected to a Ubisense Tag
Module. The sensor unit uses the tag module to
send data over the Ubisense 2.4 GHz wireless back-
channel. This provides the system with the exact
location of a sensor (and/or the device to which it is
attached) and avoids the need to install another
wired or wireless communication system only used
by the sensors. The Ubisense ultra-wideband sensors
are the standard 7000 series sensors; however, the large
number of sensors within the Tampa Smart Home
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Smart home architecture. Combination of environmental and location sensors connected to Linux server running Ubisense core platform ser-
vices (Ubisense Ltd; Cambridge, England) as well as custom smart home applications for behavior monitoring, prompting, and data analysis.
End user applications run on Windows (Microsoft; Redmond, Washington), iOS (Apple, Inc; Cupertino, California), and Android (Google, Inc;

Menlo Park, California) devices. Admin = administration, Fractal D = fractal dimension, IR =
sonal computer, RF = radio frequency, UWB = Ubisense wireless backchannel.

requires a special firmware for sensors and tags to

increase the discrete channels in the 6 to 8 GHz band.

infrared, LCD = liquid crystal display, PC = per-

The Windows (Microsoft; Redmond, Washing-
ton) client systems fall into two categories: desktop
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personal computers and wall-mounted liquid crystal
display (LCD) panels. The desktop machines run an
administration application to add and remove
tracked objects, approve locations for patients to
enter (check in and out [CICO] system), configure
behavioral prompting, and schedule tasks. An inter-
active facility map displays all tracked objects on
the desktop computers. The wall-mounted LCD
panels run the administration and map application
and a “dashboard” application in the background.
The panels activate in the presence of a tag and the
dashboard enables access to the administrator appli-
cation, map, scheduler, and user settings based on
rights associated with the user’s tag so that patients
cannot access the administration application. Addi-
tionally, a notification application runs continuously
and, when commanded, pops to the foreground of
the LCD panel to display prompts and schedule
notifications to the patients by an application run-
ning on the server.

The i0OS client systems are designed for the
PTRP staff and duplicate the desktop administration
client and map applications on 10S devices. This
was accomplished by developing a .NET Web ser-
vice that wrapped the necessary portions of the
Ubisense API, allowing us to create applications to
send and receive data from the Ubisense core plat-
form services by using the open standard HTTP
REST methods (GET, POST, PUT, and URL Query
Strings). The current iOS applications are written
using the Unity engine (Unity Technologies; San
Francisco, California), which allows use of the
same applications on Mac OS (Apple, Inc), i0S,
Android, and Windows devices.

PATIENT AND STAFF TRACKING

Using Ubisense Real Time Location System
technology to track patients has been validated in
several prior studies, which tracked residents in
assisted living facilities [28-29]. The system tracks
an active radio frequency identification tag using
sensors mounted on the walls of the facility. Sensors
are grouped into cells covering a segment of the
PTRP. The tags broadcast their identification on a 6
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to 8 GHz ultra-wideband channel at an adjustable
rate (up to 40 Hz) determined by tag location and
velocity. The group of sensors within a cell track
tag use time-delay-of-arrival and angle-of-arrival
methods to determine tag position in three dimen-
sions to within 0.16 m. Each cell’s master sensor
relays the tag’s position to a server, which aggre-
gates the position of all tags within the PTRP. This
position information is then made available to each
of the applications discussed in the following section.

INTERACTIVE SAFETY AND REHABILITA-
TION APPLICATIONS

The smart home will provide PTRP staff with
the means to monitor patient location to enhance
overall safety and assist patients reacquire behav-
iors lost because of TBI. The applications imple-
mented include scheduled reminders, location
assistance, and interactive prompts through 65 wall-
mounted, touch-screen LCD panels throughout the
PTRP. A related application under development for
desktop machines and iPads (Apple, Inc) enables
the control of context, content, and frequency of
messages delivered by other applications.

Patient Safety

Patients with TBI present challenges similar to
those with dementia; one challenge concerns unat-
tended exiting or being away without leave. PTRP
staff currently use paper-based protocols for CICO.
A recently installed system employs two touch
screens in the lobby: one for CICO and one at the
exit door to prompt the veterans if they attempt
departure without interacting with the CICO console.
CICO requires the patients to select their destina-
tion from a menu and indicate their estimated return
time. If veterans forget to check out (or check in
upon return), they are reminded to do so. The type
of reminder selected by the clinician may be highly
specific (“You forgot to check out”) or subtle (“Did
you forget something?”’) and may vary as a function
of therapeutic progress, but in all cases it urges the
veteran to try to remember. The CICO system frees
staff members to perform their duties without
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constantly monitoring the exit, while providing the
patients with “gentle” reminders of a required action.

Map and Navigation

The map and navigation application will enable
PTRP staff to quickly locate patients who fail to
appear for scheduled therapy sessions and meetings
using iPads, iTouch/iPhones (Apple, Inc), Android
devices, or any locally available wall-mounted LCD
panels. This resource quickly gives the veterans’
current location or, if they are not in the facility, the
last known location. Veterans and visitors can also
use the map for personal navigation by obtaining
directions to any office in the PTRP facility.

Schedule and Medication Management

The scheduling system is a core system feature
that will work in conjunction with other applica-
tions, including medication management. The inter-
face presents a basic calendaring application that
allows veterans and staff to set meetings and ther-
apy sessions and provide reminders of upcoming
activities. The scheduling information informs the
CICO console so that a patient receives reminders
to return before scheduled appointments. It also
works in conjunction with the mapping application
to automatically indicate the patients’ optimal route
to their next appointment.

For the medication management application,
veterans are categorized into three medication man-
agement autonomy levels; each gives the veteran
increased control over their medication schedule.
The first level requires the veteran to be present at
the nurses’ station to receive medication. The sec-
ond level requires the veteran to be present at the
nurses’ station and to indicate the medication type
and dosage required before receiving the medica-
tion. At the third level, the veteran receives medica-
tions in advance and maintains them in a pillbox,
which requires forethought to both take the medica-
tion and request prescription refills. The system
appropriately prompts the patients to perform the
activities required by their autonomy level until it
detects that the activity has been completed. For
example, the system determines the location of the
patient and the patient’s instrumented pillbox; when

the veteran visits the nurse’s station or accesses his
or her pillbox independently, reminders cease until
his or her next scheduled medication.

Behavior Prompts

Eligible behaviors for modification are deter-
mined by PTRP staff and entered into the behavior
management application, which places movement
patterns in the context of the veteran’s location. For
example, the behavior of taking the kitchen trash to
the main trash bin is defined for four actions:

1. Go to trash can in kitchen.

2. Remove trash bag from trash can.

3. Go to main trash bin.

4. Open main trash bin and put trash bag inside.
These events must occur sequentially; the patient’s
trash can and the building’s trash bin are outfitted
with sensors that report usage. The PTRP staff can
program the system to track and prompt these spe-
cific behaviors. Several different prompting strate-
gies are amenable to this technology; as early as the
1950s, B. F. Skinner presented research on a tech-
nique called “errorless learning,” which used rudi-
mentary mechanical teaching machines [30] (see
http://youtu.be/EXRIFt8rzhk). An advantage of
this approach was that it reduced the number of
mistakes to a minimum (hence the term “errorless”)
and was minimally frustrating to the student, an
advantage when working with persons who may
have injuries to the brain’s limbic system. Skinner’s
protocol presented an entire sentence to be learned
and at each step, one or more words in the sentence
were systematically faded out until they were even-
tually invisible. This “stimulus fading” technique
ensured that the student could eventually recite long
passages such as the Gettysburg Address in its
entirety in response to a single cue. With reference
to our “take out the trash” sequence, prompt 2
(“Remove trash bag from trash can’) might fade out
over days so that fewer and fewer cues are required
for the behavioral sequence to be carried out.

Other common behavioral problems that beset
patients with TBI and persons with dementia are
sleepless episodes and pacing. Veterans with TBI
often aimlessly lurk or pace corridors and living
spaces. In such cases, they are normally encouraged
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by staff to do a “more useful” activity. In a smart
home, the system can detect pacing and lurking, and
when detected, the nearest LCD panel prompts the
veteran to perform a useful activity (e.g., “Why not
go to the gym?”). The system will also detect sleep-
less episodes and can alert the night duty nurse who
manages such situations.

OUTCOME MEASURES

The smart home uses two classes of outcome
measures. First, all current clinical assessments of
patient progress and staff assessments determining
discharge eligibility are and will continue to be
used. Discharge eligibility is based on progress in
cognitive, emotional, physical, and social engage-
ment. The current criteria will facilitate the evalua-
tion of the smart home rehabilitation process. The
second class is unique to the Tampa Smart Home
and makes use of the data generated automatically
by the location-aware technology, including esti-
mated distance and rate of travel through the corri-
dors. Perhaps the most interesting is the Fractal D
measure of the veterans’ movements within the
facility and its possible relationship to behavior
compliance. Briefly, Fractal D is calculated from
the changes in vector of successive episodes of
movement as the person ambulates. The lower limit
(one) indicates that the patient is traversing a
straight path between two places while greater val-
ues indicate an increasingly chaotic path with more
twists and turns. Higher Fractal D values in elderly
persons have been linked to cognitive deficits,
including persons clinically diagnosed with demen-
tia [29,31]. In older residents of assisted living
facilities, those with increasingly severe cognitive
deficits with or without a clinical diagnosis of
dementia walk in progressively more tortuous
paths, and this tortuosity is significantly correlated
with poorer cognitive status on the Mini-Mental
State Examination [29]. Polytrauma researchers
have long noted behavioral similarities between
patients with TBI and dementia patients. The tortu-
ous paths of persons with significant executive
impairment caused by TBI may yield a biometric
for assessing therapeutic improvement in patients
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undergoing “smart home therapy” if their paths become
progressively less tortuous over time and if Fractal D
covaries with other therapeutic indicators in TBI, as
has been observed with older persons with dementia.

SMART HOME CASE STUDY—VETERAN R

Veteran R is a 24-year-old male who experi-
enced multiple injuries as a result of vehicular acci-
dent in July 2008. Following initial stabilization of
his wounds, veteran R was transferred to the PTRP
for additional therapy to address a number of
chronic physical and cognitive issues that included
moderate brain damage and manifested as problems
initiating behavior and remembering appointments
and medications. Veteran R volunteered to wear an
ultra-wideband transponder tag that allowed us to
track his movements throughout the PTRP while the
system passively tracked his location throughout the
day; however, he received no prompting from the
smart home technology. The intent was to produce
an empirically derived report on how veteran R
moved about the facility, broken down in 30 min
intervals. Figure 2 provides a diagram of the loca-
tions in the PTRP in which veteran R moved. An
inspection of veteran R’s data indicated that April 4,
2010, contained 22,494 location data points spread
across 15 rooms within the PTRP in a 24 h period.
The results of the data analysis appear in the Table
and show that from 6:30 a.m. until 7 a.m., veteran R
divided his time between his bedroom (room 138),
the waiting room (where morning medications are
provided), and room 102 (where breakfast is
served). Shortly after 7 a.m., veteran R went to
room 111 for an early meeting and remained there
until 8 a.m. Following that, he went back to his bed-
room (room 138) for 1 h before attending another
meeting at 9 a.m. in room 112. The Table also dis-
plays the information concerning the remaining
activities performed on that day.

The results of the case study demonstrate that
the PTRP sensor system is capable of providing a
detailed real-time record of a given individual’s
location throughout the day. This is an essential
component for a system that uses location-aware
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Polytrauma transitional rehabilitation program floor plan, corresponding to activity matrix for veteran R presented in Table. The system can
also track activities within rooms; it is possible to locate person standing in front of stove or refrigerator or sitting on couch watching television,
allowing for varying degrees of temporal and spatial granularity. APT = apartment.

technology to deliver memory prompts and positive
reinforcements to facilitate veteran recovery.

DISCUSSION AND CONCLUSIONS

As of the beginning of August 2011, the first
phase of the Tampa Smart Home installation (track-
ing and CICO kiosk) is complete. The second phase,
installing 65 interactive LCD panels, is scheduled to

begin mid-August 2011. Currently, most patients
have volunteered to have their movements tracked.
We found very little resistance from patients and
clinicians in adopting the system despite some early
anxiety about being constantly tracked, whimsically
called the “Big-Brother Syndrome.” The clinicians
within the PTRP can now immediately locate
patients and have an instantaneous list of patients
who have checked out or returned. Both patients
and clinicians have expressed appreciation for the
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Jasiewicz et al. Guest Editorial

Activities for veteran R as observed by smart home sensor system on Monday, April 4, 2010. Values are gross numbers of location data points
reported by sensor tag worn by veteran R. Corridor locations (as veteran R moves from one location to another) are intentionally filtered out.

Transponder Tag Data Count

. Room
Time _ Total
102 104 106 108 110 111 112 126 128 131 135 137 138 139 ‘Y{::(t::lg ?

12 a.m. — — — — — — — — — — — — 3 — — 3
4 am. — — — — — — — — — — — — 3 — — 3
6 a.m. — — — — — — — — — — — — 4 — — 4
6:30 a.m. 252 — — — — 12 — — — — — 444 — 307 1,015
7 am. 351 — — — — 494 — — — — — — — — 87 932
7:30 a.m. — — — — — 626 — — — — — — — — — 626
8 a.m. — — — — — 31 — — — — — 1 1,364 — — 1,396
8:30 a.m. — — — — — 5 9 — — — — — 639 — — 653
9 a.m. — — — — — 1 755 — — — — — — — — 756
9:30 a.m. — — — — 2 — 926 — — 71 — — — — — 999
10 a.m. — — — — — — — — — 665 — — — — — 665
10:30 a.m. — — — — — — — — — 658 — — — — — 658
11 am. — — — — — — — 708 — — — — — 708
11:30 a.m. — — — — — — — — — 297 — — 109 — 162 568
12 p.m. 782 — — — — — — — — — — — — 29 811
12:30 p.m. 336 1 — — — 2 — — — 546 — 129 — — 1,014
1 p.m. — — — — — — — — — 56 — — — — 56
1:30 p.m. — — 9 — — — — — — — — — 102 — — 111
2 p.m. — — — — — — — 747 1 — — — — — — 748
2:30 p.m. — 1,043 — — — — — 100 — — — — — — 1,143
3 p.m. — 178 — 479 — — — — — — 211 — 69 1 — 938
3:30 p.m. — — — — — — — — — 1,203 — — — 1,203
4 p.m. — — — — — — — — — — 892 — — — — 892
4:30 p.m. — — — — — — — — — — 760 — — — — 760
5 p.m. — — — — — — — — — — 853 — — — — 853
5:30 p.m. 878 — — — — — — — — — 48 — 233 — — 1,159
6 p.m. 44 — — — — — — — — — 777 — — — — 821
6:30 p.m. — — — — — — — — — — 920 — — — — 920
7 p.m. — — — — — — — — — — 849 — — — — 849
7:30 p.m. 7 — — — — — — — — — 831 — 193 — — 1,031
8 p.m. — — — — — — — — — — — — 151 — — 151
8:30 p.m. — — — — — — — — — — — — 26 — — 26
9 p.m. — — — — — — — — — — — — 4 — — 4
9:30 p.m. — — — — — — — — — — — — 9 — — 9
10 p.m. — — — — — — — — — — — — 9 — — 9
Total 2,650 1,222 9 479 2 1,171 1,690 847 1 2,399 7,946 1 3,491 1 585 22,494

Note: Shaded numbers represent raw number of “sightings” transmitted by transponder tag during time interval. Single sighting provides information on tag’s
location relative to fixed origin located in southwest corner of building (bottom-left side of floor map in Figure 2). Each sighting contains x value, y value, and z
value (height) measurement expressed in meters. Individual sighting is calibrated to 0.01 m in x, y, and z, but realistically, accuracy of 0.2 m in each dimension is
best that has been achieved under normal circumstances. Tag generates more sightings the longer it stays in one area. When tag moves to another room, it gener-
ates new sightings in that location. System is precise enough to determine when person is in given location, where he or she goes next, and in what order.

utility, ease of use, nonintrusiveness, and time-saving
features of the tracking resource. The next and more
challenging phase involves installing the remaining
LCD panels and implementing the behavior-prompting
system in conjunction with an application that
allows PTRP clinicians to define behaviors in the
context of specific locations, for which we antici-
pate completion by the third quarter of 2011. We
have planned research to evaluate the effectiveness
of the PTRP in facilitating cognitive rehabilitation.
To summarize, we have described a novel appli-
cation to smart home technologies for the active
rehabilitation of patients with TBI along with the

progress of the creation of a rehabilitation smart
home at the James A. Haley Veterans’ Hospital in
Tampa, Florida. The smart home technologies
address four key areas: (1) patient safety and moni-
toring, (2) patient checkout and elopement detec-
tion, (3) schedule and medication management, and
(4) behavior prompting. The smart home acts as a
cognitive prosthetic, providing patients with indi-
vidualized prompts programmed by the PTRP staff.
We hypothesize that Fractal D will be a useful indi-
cator of patient progress. If successful, this technol-
ogy may be deployed to other PTRP facilities
within the VA medical system.
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Smart cognitive prosthetics, however sophisticated,
will not and should not replace human contact [2].
However, technology-based cognitive prostheses as
manifested in the smart home concept can play an
increasingly important role in delivering cognitive
rehabilitation services and become an integral part
of clinical practice.
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