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Abstract 

To achieve overmatch in C4I versus peer adversaries, intelligence analysts reviewing sensor feeds need 

help in identifying and classifying instances of adversary tactics, techniques, and procedures (TTP) 

execution quickly and accurately across environments and domains. Detecting a few relevant entity 

movements or clues from among a huge haystack of other contacts is extremely difficult, particularly 

when those clues may be observed by different sensors, or separated in time by minutes or longer. TTPs 

also change frequently, and relatively little training data may exist to help a system learn to detect and 

recognize TTP instances. An approach is needed that can associate TTP indicators from across the wide 

range of sensor data, while also addressing these limitations on training data. 

This work describes NeuroPlex++, an expansion of a previously developed tool, NeuroPlex, which frames 

TTP detection as a Complex Event Processor.  A key innovation is the use of a hybrid, neurosymbolic 

architecture to integrate data with subject matter expert inputs.  This architecture uses deep neural 

networks to efficiently map unstructured high-dimensional sensor data into symbolic percepts 

embedded in space and time.  A logical layer allows for human-encoded or system observed knowledge 

incorporation in a machine learning pipeline. To demonstrate our approach, we rely on a flexible, 

synthetic data testbed, and we instantiate hundreds of randomized instances of these TTPs intermingled 

with synthetic clutter vehicles.  We show detection results of NeuroPlex++ operating on sets of video 

feeds generated with this synthetic data tool on realistic adversary TTPs. 
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PROBLEM SUMMARY 

In a future fight against a peer adversary, speed of decision-making and well-grounded situational 
understanding are critical to battlefield effectiveness. The massive increase in airborne sensor capability 
provides an opportunity to use sensor data to make quick and effective decisions, provided techniques 
can be developed for helping ISR analysts manage the overwhelming volume of data produced.  ISR 
analysts need tools to integrate disaggregated data into a coherent picture of enemy activity, piecing 
together disparate, atomic events and activities into more complex events that indicate higher-level 
activities, like tactics, techniques, and procedures (TTPs).  Maintaining tools to recognize TTPs in a 
dynamic battlefield environment is particularly challenging because they change on short notice.  While 
data-driven analytics are important, a fully data-driven approach will only be successful at recognizing 
yesterday’s TTPs because of its dependency on available training data.  What is needed is an approach 
that combines state of the art data-driven ML techniques with adaptation using human expertise to 
recognize complex events and TTPs in a dynamic, battlefield environment, and to quickly update the 
library of these TTPs. 

Recognizing known TTPs is the first challenge. Complex Event Processing (CEP) [Luckham02] provides a 

mechanism for the detection of real-world, complex events.  The research community has made 

significant progress recently in combining deep learning architectures with human domain expertise to 

recognize complex events across sensor modalities using neurally reconstructed logic and arithmetically 

differentiable circuits [Ahmed22] with minimal re-training, which can be used to enable adaptation to 

domain shifts indicative of new TTPs. These TTPs can be modeled as a set of complex events that are 

comprised of many atomic events distributed over a wide range of time and space, with those atomic 

events defined by the positions and movements of entities and objects. Table 1 provides a list of 

definitions levels in such a taxonomy spanning objects to events to TTPs.  

 

Event Type Definition 

Object Detection & 
Tracking 

• Event involving the detection of position and 
movement of a single entity 

Atomic Event (AE) • Event involving watchbox/tripwire and position 
detection or separation among multiple entities 

• AEs are intended to minimize state information  
(over short intervals) 

• AEs are defined by the location and movement of 
objects/entities 

Complex Event (CE) • Most narrowly defined event that would have tactical 
relevance to an intel analyst witnessing it 

• Stateful, capturing change over time 
• Requires stitching info together from multiple 

sensors, and over a longer window of time 
• CEs are made up of AEs 

Tactics, Techniques, & 
Procedures (TTP) 

• Force level methods for accomplishing military goals 
• TTPs are made up of CEs 

Table 1. Event Level Definitions 

We next consider how typical sensor processing approaches and multi-domain sensor fusion inform this 
CEP challenge, as well as strategies for generating useful data, a critical requirement for such a complex 
event processor.  
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Data-driven machine learning, particularly deep learning, is the foundation of the current state of the art 
in processing raw sensor data.  Open source solutions exist for image classification, object detection, 
instance segmentation [Wang22] and activity detection [Heilbron15], and open-source tools are readily 
available to integrate these object-level detections into tracks [LearnOpenCV, n.d.].  These methods are 
highly related to current sensor processing methods and data fusion architectures, which are optimized 
for processing large volumes of multi-sensor data.  These methods are useful in building complex event 
processors, but they are focused on timescales that are insufficient for recognizing complex events 
spanning more than minutes or across sensor domains [Herath17].  The approach described here 
incorporates the strengths of both approaches, relying on DL for atomic event detection, and on CEP to 
recognize complex events spanning greater time and distance. 

The Complex Event Processing [Luckham02] literature is similar to that of data fusion, in that complex 
events are comprised of atomic events, though both types can be comprised of spatial, temporal and 
other features.  As defined here, complex events are those sufficiently aggregated to have tactical 
relevance to an analyst, and that can be further subsumed by enemy tactics, techniques, and 
procedures (TTPs).  A TTP is comprised of a range of coordinated actions, but crucially for modeling, how 
these actions present themselves in the environment is highly variable and dependent on specific 
terrain, weather, sensors, sensing geometry, personality/behaviors of those participating, and the 
interactions of all of these components.   

Variations in TTP instances increase the amount of data required for data-driven approaches for CEPs to 
achieve desired accuracy, and they underpin the lack of performance in data-driven approaches for long 
duration activity detection. Volume of data with relevant complex events for multi-domain operations 
(MDO) in the military domain has been a key limitation for developing and evaluating this technology for 
use in DoD applications.  The data itself is expensive to collect due to the number of assets (vehicles, 
people, sensors) required, and data labeling is a well-known limitation in applying ML algorithms.   

The lack of available suitable data remains a key limitation in developing CEP methods for this domain.  
Existing datasets do not exist that capture multi-camera views of adversary tactics, separated over 
relevant time and space and encompassing large numbers of people and vehicles. Synthetic data is an 
appealing solution to the data availability problem, but a dataset must be sufficiently relevant and 
realistic to be useful. Deep learning methods are exceptionally good at learning to process synthetic 
data, but this performance doesn’t necessarily translate into real-world performance.  Synthetic data 
generation tools have been demonstrated to improve real-world performance of object detectors 
[Craig21] and reliably predict real-world performance as a validation dataset [Martinson21].  Sensor and 
environment data synthesis must incorporate perceptual realism, the degree to which the level of detail 
captured in sensor feeds are modeled realistically, as well as behavioral realism, which means that the 
entities within the simulation are executing behaviors within the constraints of the TTP, but also 
exhibiting realistic variability.  That is, enemy vehicles and people need to maintain a realism for how 
they maneuver within the terrain, relative to each other, and within the scope of specified TTP.  Neutral 
entities, or pattern of life entities, also need to exist in the environment, and the way that enemy 
vehicles interact with neutral entities needs to be realistic.  Lastly, the sensors themselves, and how they 
collect data, need to be consistent with expected data collection behaviors.  These datasets must 
incorporate both positive and negative examples of AE/CE presence in the training data. To provide 
sufficient quantity and variability, the synthetic data must contain variable iterations of scenarios 
involving execution of targeted AEs and CEs along with negative examples for both red entities and 
background/pattern of life (POL) entities, yielding ground truth logs for both event occurrence and 
entity placement at the video frame level.  

These data-intensive approaches must also address the problem of resilience to changes in those TTPs 
[Tenzer22] which would demand immediate incorporation into CEP models. This means that one of the 
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most important functions of such a system would be the ability to adapt to new tactics and 
environments quickly, and without large amounts of additional training data. This can be achieved 
through the introduction of neurally reconstructed logic (NRL) into the CEP, to capture SME information 
in symbolic form, restructured and quantified using arithmetic circuits, and then use it as the basis for 
retraining neural layers to recognize the new events captured in the SME input. This translation of 
human expertise must be managed by the use of a customized CEP grammar for direct incorporation of 
domain expertise in symbolic information coded into arithmetic circuits to be used to retrain neural 
components without new data beyond what the SME provides, in order to ensure the detection system 
remains useful in the face of rapidly evolving enemy TTPs.  

 

PREVIOUSLY DEVELOPED CEP APPROACHES  

Complex event processing (CEP) refers to a set of computational techniques with roots in time-series 

databases and programming languages but now used in the Internet of Things (IoT) settings and cyber-

physical systems (CPS) as well, developed for processing incoming real-time events to extract meaningful 

information. The incoming events indicate some activity or change in the state of the world and could be 

in various forms, such as a sensor reading or an SMS message. Incoming events are analyzed and 

correlated to discover and infer complex events, which are rigorously defined in some formal language as 

patterns of events involving both sets of events and relationships between events, such as timing, 

location, and causality. Under the hood, state-of-the-art CEP systems use efficient pattern matches that 

scale to high-speed event flows and can detect patterns of multiple events occurring over long periods of 

time. This process, referred to as complex event recognition (CER), may also incorporate uncertainty and 

approximate matching of event patterns [Alevizos17]. For example, a distributed attack on a 

cyberinfrastructure could be inferred via a pattern involving suspicious events at multiple network nodes 

within a short time interval. Likewise, a hospital may do CEP over sensor data to detect and remedy health 

safety violations. Typically, the detection of a complex event in turn triggers downstream actions by a 

human or by an automated system. Moreover, the complex events may be organized in an event 

abstraction hierarchy. Relevant to the proposed research, a key limitation of state-of-the-art CEP systems 

is that they are designed to work with input events that are structured and low-dimensional. So while 

they work well for enterprise applications with events such as a temperature going above a threshold, a 

customer entering a website, a person leaving a building, etc., they cannot directly infer complex events 

from unstructured and high-dimensional data such as video streams, natural language text, acoustic 

sensor data, etc.  Also, these systems depend on expert-designed event patterns and cannot learn from 

data. While potential methods for inductive logic programming (ILP) [Law20] could be extended to learn 

event pattern rules for CER from examples of input event sequences and corresponding complex events, 

current ILP methods do not handle time and location as first-class entities. 

Neural approaches to detecting complex activities and events: In deep learning, recurrent neural 

networks such as LSTM are used to monitor temporal data for purposes of event detections and activity 

recognition. However, there are limitations that make just using LSTM (or other recurrent neural 

networks) to predict complex events not a good approach. First, modeling long-term dependencies 

requires memory and with typical sensor sampling rates can grow to large amounts and also require huge 

volumes of data to learn from. As a result, even large RNN models are limited to a few hundred timesteps 

and a few seconds with modalities such as video and audio [Singh16, Cakir17]. Even architectures such as 

Temporal Convolution Networks (TCN) [Lea16] and Transformers with attention mechanisms [Dai19, 
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Zhou21] do not help much with memory reaching ~10s and ~1K steps. Besides the challenge of limited 

temporal memory, the purely neural approaches also suffer from models that are not inherently 

interpretable, requiring posthoc explanation methods that generally work by highlighting salient features 

[Chattopadhay18, Lundberg17], providing approximate local models that are interpretable [Ribeiro16], or 

offering relevant examples from the training set [Jeyakumar20]. Moreover, the interfaces between layers 

that are the components of end-to-end deep learning models are generally not human-comprehensible, 

which makes it difficult to reuse them in the way symbolic algorithmic approaches allow. 

Neurosymbolic approaches to detecting complex activities and events: In research conducted under the 

US-UK DAIS ITA program (https://dais-legacy.org), we introduced neurosymbolic architectures for CEP 

[Vilamala20, Vilamala21, Vilamala23, Xing19, Xing20] that combine symbolic reasoning and neural 

representations to create a whole that is greater than the sum of its parts. The intuition was that 

differentiable and over-parameterized neural components learnt from data can efficiently process 

sensory inputs to create precepts to assist symbolic reasoning and make it scalable, while the symbolic 

components expressed as logic rules can provide interpretability and analyzability, enforce constraints at 

runtime, allow for injection of human knowledge, and act as regularizers that guide the learning of neural 

components. We investigated several variants with different characteristics as shown in Figure 1. Starting 

from a stream of raw sensory data, potentially from distributed multimodal sensors, neural networks are 

used for summarizing the sensory perception in a form that can be digested by either a differentiable 

probabilistic logic program allowing for the gradient to be back-propagated [Vilamala20] or by another 

neural network that has been trained in a teacher-learner fashion [Hinton15] and then frozen while 

training the entire pipeline [Xing20]. Other research in the DAIS-ITA, while not in the context of CEP, 

showed that neurosymbolic approach also offers advantages of robustness to domain shifts 

[Cunnington21].  

 

Figure 1. Neuroplex and DeepCEP Neurosymbolic Architectures for Complex Event Processing 
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While providing promising results [Vilamala20, Vilamala21, Xing19, Xing20], the neurosymbolic paradigm 

for complex event processing in the initial research is restrictive and inflexible: it uses neural networks to 

map high-dimensional data to a fixed set of pre-defined low-level concepts or events [Jeyakumar23], 

which are then centrally analyzed symbolically by an extensible set of probabilistic logic rules that have 

no concept of time and space. Moreover, the neurosymbolic architecture is constructed for a fixed 

complex event specification, with a new complex event requiring a new model to be constructed from 

scratch. The project aims to make research advances that address these limitations.  While the DAIS-ITA 

research on neurosymbolic methods for complex event processing was groundbreaking [Vilamala20, 

Vilamala21, Xing19, Xing20], the broader concept of integrating neural and symbolic approaches has 

previously been studied in AI. A first wave of research in 1990s sought to convert symbolic models into 

neural networks for further fine-tuning with data [Towell90], extract symbolic programs from neural 

networks learnt from data for further fine-tuning by domain experts [Towell93],  and combine the 

preceding two to go back and forth [Shavlik94]. These early attempts at neurosymbolic architectures 

however did not have an impact as neural networks were not yet sufficiently performant for real-world 

usage due to lack of training data and hardware accelerators. In recent years, with real-world deployments 

of DNNs leading to concerns about their limitations [Bengio19], there has been a revival of interest in 

neurosymbolic approaches [Besold17, Chaudhuri21].  In the field of program synthesis there has been the 

emergence of neurosymbolic programming and its applications in symbolic regression for scientific 

discovery [Cranmer20], assistive tools for software developers [Ellis17], control of autonomous systems 

[Xu18], etc. It has the goal of synthesizing a program with both symbolic and neural components from a 

high-level task specification while simultaneously meeting hard logical constraints, approximately fitting 

a dataset, and generalizing to novel inputs.  The recent research in neurosymbolic programming has 

studied both neurosymbolic learning algorithms and neurosymbolic program representations, providing 

useful insights such as the use of metalearning to train neural networks that generate the high-level 

program architecture [Balog16], and methods to distill neural networks into symbolic programs 

[Verma18] and to relax symbolic programs into neural networks [Verma19, Cui21].  Another relevant 

strand of recent research on neurosymbolic systems is represented by [Valkov18, Murali19, Cingillioglu21, 

Cunnington21] which all operate on images and process them with neural networks followed by symbolic 

logic to perform tasks such as visual discrimination and reasoning over objects in the image.  While 

relevant, neither the research in neurosymbolic program synthesis nor the research in visual reasoning 

over images, address challenges in neurosymbolic complex event processing for situational awareness we 

target. It requires neurosymbolic architectures that process sensory data streams, incorporate 

spatiotemporal information, account for uncertainty, meet real-time requirements, be resilient to 

adversarial actions, and adapt to changing knowledge. Besides our prior work, research such as 

[Apriceno22] and [Niecksch23] have recently also explored complex events over unstructured sensory 

data from theoretical and experimental systems perspective. 

NEUROPLEX++ DETECTION AND RECOGNITION ENGINE 

Development and refinement of the detection and recognition engine called for incorporation domain 

expertise and data-driven learning, as well as the need to demonstrate classification performance 

across the CEP solution. The key challenge was ensuring that the components that constitute the 

perception layer of the architecture and process the raw, unstructured, high-dimensional sensory data 

into AEs are appropriately tuned for military relevant AEs. The existing NeuroPlex system [Vilamala21] 

targeted CEs in civilian settings with relatively simple AEs that only required object classification in a 
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video frame, acoustic event classification in sound, and human motion activity in inertial data, all of 

which it was able to perform using off-the-shelf pre-trained DNN models for object or event 

classification with reasonably high accuracy. However, the existing version of NeuroPlex did not 

include native capabilities for detecting and classifying military-relevant AEs in scenes with multiple 

dynamic objects. AE detection in such scenes requires detecting, classifying, and localizing objects in 

video frames; then tracking them over time across frames; and performing spatiotemporal reasoning 

across time, space, and multiple sensor data streams. The existing system lacked these capabilities and 

had to be enhanced.   

The required capabilities were introduced by re-engineering the neurosymbolic pipeline to expand its 

capabilities as well as devising a language for specifying the AEs and CEs to handle necessary spatial 

concepts such as trip wires, watch boxes, etc. The neurosymbolic pipeline consists of two stages: a 

single-pass object detection DNN for each sensor which outputs a set of objects, including their type 

and bounding boxes [Wang22], and a two-part symbolic processing stage. The first part of symbolic 

processing performs tracking and reidentification of objects across video frames while undertaking 

rule-based measures to mitigate detection and tracking errors, and the second part detects the AEs 

and the CEs using finite state machines (FSMs) generated from the AE/CE specification language.   

The neurosymbolic pipeline thus expands roles for both the neural and the symbolic stages relative to its 

predecessors: the neural processing now performs detection and localization instead of just 

classification, and the symbolic processing now performs tracking, reidentification, run-time error 

mitigation, and spatiotemporal reasoning relating to AE/CE detection instead of only detecting temporal 

patterns that constitute CEs.  

Incorporating multiple objects, spatial reasoning, and temporal patterns. While evaluation of complex 
spatiotemporal events is typically more effectively done with first-principal models that are maximally 
generalizable, analysis of high-dimensional unstructured sensor data is typically better approached by 
data-driven models. The neurosymbolic approaches represented by DeepProbCEP [Vilamala23] and the 
original NeuroPlex provide a balanced combination of the advantages of these approaches. 
Unfortunately, first generation neurosymbolic CE approaches targeted settings that required only object 
classification (no detection, localization, tracking, etc.) and detection of temporal patterns over 
sequences of classification labels (no spatial reasoning). This required an improvement beyond the use 
of neural proxies interpreting symbolic information into exact arithmetic circuits to backpropagate new 
information about CE prediction into the trained object and event classifier(s) [Gan18].  

These needs were addressed by the introduction of an object detector based on YOLOv5, a single-pass 

DNN based model, discussed in greater detail below [Zhu21]. This served as the basis for development 

of an object tracker, which re-identifies and tracks objects across frames, and mitigates errors and 

confounders in object detection. Two symbolic units were designed for event detection:  

• AE Detector: Detects spatial patterns of objects over short time intervals using abstractions of 

watch boxes and trip wires.   

• CE Detector: Detects temporal patterns of AEs occurring asynchronously and irregularly over long 

spans of time.  

The CE specification language was expanded to accommodate multiple objects per sensor sample, 

incorporate object locations, multiple sensors, and spatial abstractions, and allow declarative 

expression of temporal patterns. This modified language was used as the basis for analysis of the 
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performance of the CE detection performance under various conditions. Functionality of the system is 

outlined below in Figure 2.  

 

 

Figure 2. Implementation of neurosymbolic reasoning. 

Object Detection. The YoloV5 model we used for object detection was trained as follows: We used an 

off the shelf, state of the art detector with a well-supported software base [Zhu21]. This tool was 

trained on 8,800 images across 5 object classes, including a T-72 tank with a neutral color scheme, a 

BTR reconnaissance vehicle, and three different classes of civilian vehicle. Training was started with a 

network of medium size, using a v6 model. The outputs yielded by the detector included a bounding 

box for each targeted entity, object confidence, and SoftMax confidence estimate for each class. This 

capability informed the phase II plan for object tracking using Kalman Filters. Figure 3 is an illustration 

of the output of the Object Detector performance, including entity class detected and confidence level 

associated with the classification.   

Figure 3. YoloV5 Object Detector Class and SoftMax Confidence Level Output 

Generalizing performance to operational conditions for which the system was not specifically trained. 

When conditions change, the existing library of entities, AE, and CEs a CEP system has been trained to 

recognize may no longer be sufficient. Domain shifts can take the form of new environments or 

conditions under which a TTP is exercised or attempted, they may involve the modification or 

adoption of entirely new TTPs or unit-level behaviors. They may simply involve changes in the 

reliability, availability, or periodicity of sensor data upon which event recognition was based. Any such 
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changes may mean that the CEP system will need to adapt or be modified in order to work in this new 

domain – whether by modification of detection criteria, specifications of new entities or events, or 

environmental changes that force redefinition of AE/CEs in the existing library.   

We argue that domain shifts to be accommodated will fall into three broad categories, perceptual, 

behavioral, and environmental shifts. If the causes of uncertainty triggers appear to be driven by the 

inability of the sensor(s) to detect behaviors that are relatively unchanged, the task for the SME may be 

to define or revise existing detection criteria, accommodating a perceptual domain shift. Perceptual 

domain shifts will call into question whether the AEs and CEs targeted by the system’s existing models 

will still be detected based on reduced signal quality. For example, if a sensor is occluded by weather 

conditions so that the sensor can only detect 50% of the behaviors indicating a red force attack is 

imminent, should the system infer an attack likely if 40% of the entity behaviors expected are observed 

by the sensor? The SME will make this determination and input guidance into NP++ using the CEP 

grammar UX. Conversely, a behavioral domain shift will involve the definition of new entities, behaviors, 

potential modifications of AE/CE, and respecifications of the rules governing interaction of entities with 

each other and their environments. Environmental domain shifts can be defined as changes in the 

terrain or environment in which the sensors are deployed causing degraded performance for the neural 

components. The impact of terrain or environmental changes can be conceptualized using a 

combination of perceptual or behavioral effects, given their potential impacts on sensor performance 

and how, where, and when entities move. 

SYNTHETIC DATA GENERATED FOR PERFORMANCE EVALUATION  

Development of Scenarios and TTP Variations. The team developed systematic, scalable, labeled 

scenario files containing relevant, accurate, varied iterations of background, AE, and CE behavior in 

appropriate environments by red and background POL entities for training and evaluation of the 

NeuroPlex++ system. 

Relevance of Use Case. The first challenge was development and simulation of an appropriate use case 

that serves as a tactically relevant, plausible instance of CEs underlying adversary TTP demonstration 

across operational conditions. The use case also needed to provide an operational example of multiple 

CEs and underlying AEs exemplifying the target TTP(s), in the presence of background entities.  The 

scenario data representing this use case had to be implemented as an accurate representation of 

entities executing the AEs and CEs. These behaviors had to be modeled appropriately as raw sensor 

data for ingestion by NeuroPlex++.   

Scenario Modeling. Scenarios needed to be designed that would provide demonstrations of tactically 

relevant atomic and complex events that could be detected by simulated sensors [Xing21]. The AEs 

and CEs needed to be implemented in an appropriately modeled environment, that afforded the right 

level of fidelity for environmental features and details constraining entity movement. The environment 

needed to provide a realistic instance of the level of granularity with which roads, features, and 

entities could be described while maintaining a reasonable burden of processing time for generation 

and rendering. The acuity, zoom level, and altitude of the simulated airborne sensors to be taken into 

account as well, to ensure that the entities targeted for recognition were depicted using an 

appropriate number of pixels so as to provide a meaningful challenge for a trained object detector 

[Sun21].  
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Data Synthesis. The tools and processes to be used for synthesis of the environments, entities, and 

sensor feeds needed to be defined such that the scenarios in which AEs and CEs were modeled could 

be generated at scale, with appropriate entity behaviors, goals, waypoints, and sources of variation 

across iterations defined for both red and background entities [Stensrud12]. The scenario files 

generated also needed to include a usable number of negative examples in which AEs and CEs did not 

occur for purposes of training. Finally, the data needed to be labeled appropriately with ground truth 

for entity positions and event occurrence.  

As depicted below in Figure 4, the team developed a series of scenarios for Phase I taken from real 

world conflict use cases in Eastern Europe. As was widely depicted in global news in 2022, the problem 

of making predictions about red forces moving armor/tank columns in and around contested bridges 

was of significant tactical relevance to the War in Ukraine. Elements of these real-world situations were 

adapted for the phase I use case, simulating a defense by blue forces of a series of bridges in the Ann 

Arbor MI metropolitan area. The original scenario included the decisions regarding blue force 

deployment in response to predictions of enemy intentions when moving through three different 

named areas of interest (NAI).   

Figure 4. Tank column bridge scenario model 

Conditions of the scenario were as follows:  

• Orientation: Enemy armored forces are moving west along Highway 14 with the intent of crossing 

the Enborne river.  

• Situation:  The Regiment is established West of Highway 23 in a blocking position south of the 

Enborne River.  
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• Mission: On order Battalion forces establish a blocking position south of the Enborne River (in view 

of Hwy 23 bridge) in order to drive enemy armored forces to a western river crossing (in view of 

downtown).  

• Execution:  The Regiment has emplaced obstacles at the intersection of Ply Rd and Highway 23 

(NAI 2) with the intent of pushing the enemy toward the western river crossing along Huron Pkwy.  

The Battalion will maintain its blocking position south of the river while the Regiment engages the 

enemy along Huron Pkwy.  

• Admin and Logistics: All re-supply and logistics requirements are handled at the Regimental level.  

• Command and Signal: Battalion retains OPCON of all organic fire support, aviation, and ISR assets.  

  

A limited subset of this scenario was implemented as the initial AE/CE recognition challenge described 

here, using three simulated fixed position aerial surveillance assets between NAIs 2 and 3.   

 

Development of Complex Event Taxonomy. Behavior of the entities used to define the AEs and CEs 

depicted next was organized using a taxonomy developed for this effort, which began with the detection 

and tracking of objects or entities as the base level recognition task. Sensors were modeled as 

electrooptical cameras that recognized presence of entities for which they were trained at the individual 

frame level. These data were not used to emulate sensor tracks for purposes of this effort. Detected 

objects were used as the basis for defining AEs, which were triggered by watchbox or tripwire crossing 

by targeted entities with different relative positions or separation from other specific entities (i.e., 

distance from the other tanks in a column). AEs were used here to capture the location and presence of 

single or multi-entity groups over short spatio-temporal distances. AEs were aggregated into CEs, which 

required the stitching together of information from multiple sensors, over greater periods of spatio-

temporal distance. CEs were designed to capture change over time, and are defined as the most 

narrowly specified multi-entity events that could be expected to have tactical relevance to an intel 

analyst witnessing them.  

In other words, a CE is one that an attentive analyst would be expected to recognize and attribute 

tactical implications of a set of disparate movements by multiple entities across time and sensors. CEs 

are the highest order events modeled in the Phase I data, but they are designed to be consolidated into 

military tactics, techniques and procedures (TTPs).   

Development of AE/CE Scenarios. Using this taxonomy, and a limited subsection of the original scenario, 

we implemented the following set of Complex Events and underlying atomic events. Using a portion of 

the Ann Arbor map spanning NAIs 2 and 3, we modeled three fixed-position aerial sensors at a simulated 

altitude of 400’ above ground level, sufficient to render objects for which our YoloV5 object detector at 

a number of pixels needed to achieve plausible performance levels [Martinson21]. If the simulated 

altitude had been raised much higher, we would have been able to observe many more entities 

simultaneously in each sensor’s field of view, but object detection would have suffered as a result, likely 

rendering the detection of all events impossible.   

The sensor watchboxes rendered and specific terrain captured in the fields of view of each simulated 

sensor are depicted in Figure 5 (See Appendix B for more detail on these modeled sensor positions). 

Sensor 1 was modeled as two concentric watchboxes directly north of Highway 23 of dimensions 500m 

x 280m and 350m x 100m. Sensor 2 was modeled using the same structure at a position 2000m north 

of the Enborne River, and Sensor 3 was modeled as a viewing area of the same size, with watchboxes 
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defined on the north and south sides of the river used to monitor for reconnaissance vehicles in 

advance positions.  

Figure 5. Fixed sensor positions 

We defined three different CEs involving movement of a column of tanks and recce vehicles through 
Ann Arbor toward a bridge. In all CEs, the column consisted of 4-6 tanks moving in two staggered 
columns with targeted separation of 20m between the nearest neighbor when in formation. The column 
was escorted by a set of 4 reconnaissance vehicles that moved in pairs, with targeted separation from 
the tank column of two minutes, and a targeted distance between the two pairs of reconnaissance 
vehicles of 50m during travel. All roads were also populated by a randomly distributed set of 400-500 
civilian vehicles. Below is a summary description of each complex event. Exact details are provided in 
Appendix A. 

• CE1 Column preparing to detonate the bridge, as indicated by reconnaissance vehicles taking 

positions on both sides of a bridge in pairs, in the road, blocking civilian traffic, at a distance of 

>100m from the ends of the bridge, with the tank column not moving toward the bridge, and the far 

pair of reconnaissance vehicles rejoining the column after two minutes in position.  

• CE2 Column preparing to cross the bridge, as indicated by reconnaissance vehicles taking positions 

on both sides of a bridge in pairs, off road, not blocking civilian traffic, with the tank column 

moving toward the bridge.   

• CE3 Column taking up a defensive position, as indicated by reconnaissance vehicles moving in 

pairs in all directions away from a planned defensive position and stopping to monitor 

traffic/threats from fixed positions away from the tanks. Tank column breaks formation and forms 

into a line or an arc between the sets of reconnaissance vehicles.    

 

Each scenario “take” consisted of video feeds representing the same 10 minute period captured by 3 

stationary airborne sensors. Red entities consisted of a column of 4-6 tanks escorted by a set of 4 
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recce vehicles. POL entities consisted of civilian auto traffic. Occurrence of all these AEs took place 

over a period of 5-10 minutes and involved detection of objects monitored by 3 different sensors.  

 

Development of the Unity Simulation Environment, NP Sim. The system used to generate the scenario 

data described above was a Unity-based capability called NP Sim. This tool is capable of defining the 

entities to be modeled in a scenario, along with their goals and behaviors managed by a scenario 

controller as depicted below in Figure 6. More importantly, it automates the process of scenario 

generation, execution, and recording, enabling the generation of an unlimited number of variable 

iterations of scenarios involving targeted behaviors, and boundaries for their variation across scenario 

iterations. 

Figure 6. Architecture of the NP Sim tool.  

The behavior of the red entities was operationalized as a set of emergent actions based on a waypoint 

following behavior, an obstacle avoidance behavior,[Heilbron15] based on assigned destination 

targets, interactions with each other and POL vehicles, and starting locations on the map. Refined 

movements at critical points for increased probability of AE/CE engagement were defined using 

clusters of waypoints. Red entity routes were governed by a low density directed graph of waypoints, 

selected using in the entity controller as part of a state machine defined as part of the scenario. The 

selected entity goals directed the order in which targeted actions, including all AEs and CEs, were 

attempted within the scenario.  

In functional terms, the most important parameter used to manage red entity formation adherence 

was entity speed. Tanks and reconnaissance vehicles were assigned grouping characteristics, with each 

group assigned a random speed within a specified range. Individual vehicles within groups had 

interval/separation targets they attempted to adhere to by varying their speed, and direction insofar 

as directional variation was necessary to avoid collisions.    

This process also supported the generation of more sophisticated POL entity traffic behaviors, 

ensuring comparability between POL/background AEs and red entity AEs. POL and red behavioral 

comparability in the synthetic data was necessary to provide a meaningful recognition challenge for 

the tool.  POL entities utilized a high-density waypoint following system built along roads via COTS 

traffic asset for Unity, the Gley Traffic System.   
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POL vehicles started at random positions on the roads anywhere on the modeled terrain. Red Entity 

starting points were variable, but all north of sensor 1 in this data corpus. Note that additional 

variation was introduced by the emergent behaviors that resulted from the interaction of the behavior 

controller and the Unity physics system. This introduced variation across iterations due to this 

interaction regardless of whether the scenario controller, the entity planner, and the entity controller 

all dictate identical constraints and direction to the entities modeled within a scenario. So while seed 

values dictating how an NPSim scenario can be held static between takes, there are no full scenario 

iterations that can ever be completely deterministic due to the interaction of these entities with each 

other [Vaswani17].  The non-deterministic nature of these scenario iterations is desirable due to the 

contribution it makes to execution variability (within constraints) across scenarios, but it does mean 

that there can be iterations where targeted behaviors and goals defined by the scenario controller and 

entity controller are not successfully executed [Heilbron15, Herath17]. The incidence rate of failure to 

execute assigned behaviors across iterations appears to be extremely low, which could be verified 

using the ground truth data also produced by NPSim.  

Data Labeling. NPSim ground truth information is captured in a log file generated for every scenario 

iteration. This file captures when the state machine transitions between states. The process by which 

entity behavior is modeled across iterations includes explicit, translatable criteria for instances where 

mapped AE and CE events occur and capturing entity positions frame by frame. This readily yields 

geographic coordinates within a sensor box for location of all AEs, CEs, and targeted entities (in phase I, 

limited to red entities) along with a timestamp at the frame level for the metadata produced.  

Data Corpus Generated. The list below in Table 2 summarizes the 311 scenario variations generated to 

model each of the complex events described above, as well as incomplete CE demonstrations or 

scenario takes in which no CE was modeled.  Metrics used for comparison and for exploratory purposes 

are discussed next, along with results of all detection and false alarm analyses conducted on original 

environment and domain shifted scenarios.  Two varieties of perceptual domain shift were implemented 

as a representation of our goal to generalize NeuroPlex++ performance to different operational 

environments:  

a. Intermittent wildfire smoke introduced as an occlusion that blocks sensor visibility of entities  

b. Variation of hostile entity appearance: We introduced variations of the T-72 tank design for which 

YoloV5 Object Detector (OD) was not trained   

 

Multiple variations of smoke opacity and tank design were introduced to ensure that the domain shift 

change provided an appropriate challenge to the YoloV5 OD. Initial versions of each resulted in zero 

object recognition in the wildfire smoke example, and 100% object recognition using the first version 

of the T-72 tank variation, neither of which were useful levels of baseline performance for assessing 

functionality of the symbolic detection algorithms designed for AE and CE detection. Examples of both 

types of perceptual domain shift introduced are illustrated below in Figure 7.  
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CE  Takes  Variations  

1  38 complete  118 variations:  

37 incomplete  

54 DS alternate tank  

27 DS smoke  

2  41 complete  3 DS alt tank  

0 DS smoke  

3  52 complete  2 DS alt tank  

1 DS smoke  

None  49 no AEs  3 DS alt tank  

4 DS smoke  

Table 2. Data corpus by Complex Event 

Note: alt = alternate; DS = domain shifted. 

 Scenarios counts in boldface are reported in subsequent analyses 

 

 

Figure 7. Examples of perceptual domain shift introduced in scenarios 

While the work reported here is limited to demonstration that CEP detection could be maintained 

under domain shift, a far more important question for continuation of this work concerns how system 

recognition of domain shift could be defined and triggered. As a result of our data synthesis and 

architecture updates, the team was able to specify a needed mechanism for recognition of conditions 

under which generalization to other environments or recognition of new tactics was needed.   

Pending improvements will associate quantitative uncertainty measures for neurally derived object 

detection. Multiple techniques for one-stage object detection have already been discussed, including 

the approach introduced by He [He19] that focused on uncertainty in bounding box regression, and 

that focused simultaneously on two sources of variance: bounding box transformation and 

localization. Other researchers [Kraus19] have looked at dropout as an approximation technique for 

prediction distribution of a Bayesian NN, while Lyu [Lyu16] combined deep ensembles and Monte 

Carlo dropout for uncertainty estimation. These one-stage uncertainty estimates will be assessed first 

as candidates for definition of domain change thresholds. Failing this, the viability of multi-object 

tracking algorithm uncertainty indices will be investigated. These uncertainty estimates will be used to 
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define thresholds indicating to the system that a domain change has occurred, and that SME updates 

to the entity and event library using the CEP Grammar UX are urgently needed. Those SME updates 

should make it possible to accommodate all types of domain shift, while maintaining CE recognition 

accuracy with a minimal set of SME-defined training examples.  

 

ASSESSMENT OF NEUROPLEX++ PERFORMANCE AT COMPLEX EVENT DETECTION 

The solution described relied on neurally trained tools for detection of relevant objects, and symbolic 

reasoning for the detection of AEs and CEs. As stated above, the improvements to the first generation 

neurosymbolic CE approaches previously developed under DAIS ITA were not suited to detection, 

localization, or tracking, and were not capable of spatial reasoning; they had previously been used for 

classification and temporal reasoning only. The improvements we introduced to address this need 

includes neurally based object detection using the single-pass YOLOv5 DNN model. The updated 

system also includes a robust tracker that reidentifies and tracks objects by comparing the changes in 

the relative positions of object IDs across adjacent frames and mitigates errors and confounders in 

object detection.  

We also redesigned the CE specification language to support multiple objects per sensor sample, 

object locations, multiple sensors, and spatial abstractions, and allow declarative expression of 

temporal patterns. We used this to analyze and improve CE detection performance under various 

conditions. Event detection was managed by two symbolic units designed for this purpose: an AE 

Detector that detects spatial patterns of objects over short time intervals using abstractions of watch 

boxes and trip wires, and a CE Detector that captures temporal patterns of AEs that can occur in many 

different orders and with different temporal separation over long spans of time. Event detection 

accuracy rates and false alarm rates were measured according to the operational definitions below.  

1. Accuracy: The proportion of takes for which the identified CE and underlying AE set matches or 

fails to match ground truth information1. 

2. Missed detections: number of AEs or CEs which were missed but occurred in the ground truth.    

• Complex Event detection accuracy and missed detection count are reported for the 38, 41, 

and 52 takes of complete occurrence of the AEs contributing to CEs 1, 2, and 3, respectively, in 

Table 3.  

• Complex Event detection accuracy and missed detection count under domain shifted 

conditions are reported for the 54 CE1 takes involving wildfire smoke and the 27 CE1 takes 

involving alternative tank coloring schemes on which the OD was not trained.   

3. False alarms: number of AEs or CEs which the NeuroPlex++ system detected but did not occur in 

the NPSim ground truth logs.   

• False alarm analyses were only conducted on the takes with incomplete execution of CE 

contents (37 takes involved subsets of the AEs contributing to CE1) or those with zero 

intentionally included AEs (the 49 takes listed in Table 3)  

 

 
1 It is worth clarifying here that in this specific set of scenarios, the CEs we defined required the detection of all 

component AEs, but in other settings and circumstances, this may not be the case. 
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Metric thresholds for detection accuracy were defined using a synthetic dataset representing three 

different CEs, each composed of at least three different AEs, with AE elements separated by space and 

time, and captured by multiple sensors. Thresholds for detection accuracy for each CE was 90% in the 

initial operational environment modeled, with a false alarm rate of no more than one false alarm per 

hour (assuming some constant rate of evaluation over time). The CEs were then to be modeled in a 

second operational environment, and the CE detector performance was evaluated in this second 

environment after being provided minimal training data. Detection accuracy threshold in the second 

operational environment was 80%.  

Summary results are provided below in Table 3. The team achieved detection accuracy targets for all 3 

implemented CEs, across a total of 131 three-sensor scenario executions, as well as another 37 takes 

in which a subset of the AEs making up CE 1 were incorporated. False alarm rates across 86 takes 

comprised of: an incomplete set of AEs underlying CE 1 (N = 37); or takes in which no red entity AEs 

were included (N = 49) were 1 and 0, respectively. In the initial operational environment, all 

performance thresholds were met.  

The additional operational environments used to test the performance of NeuroPlex++ for 

environments in which it had not been explicitly trained included 54 takes of CE 1 execution by a 

variation of the T-72 tank with a different paint scheme on which the YOLOv5 DNN had not been 

trained and 27 takes of CE 1 in which smoke from a stationary wildfire periodically obscured visibility 

of ground entities to the sensors. Execution of AEs underlying CE1 were accurately detected in 45 of 54 

cases involving the alternate T-72 paint scheme, for an accuracy rate of 83.3%. In the case of the 

wildfire smoke, all AEs underlying CE1 were detected in 18 of 27 cases, for a detection accuracy rate of 

66.7%. In the modified operational environments, therefore, detection accuracy was mixed, with the 

80% threshold achieved in one environment, but not the other.   

 

Table 3. Summary accuracy and false alarm rates. 

Note: CE = Complex Event, DS = Domain Shift, FA = False Alarm, insuff = insufficient  

Complete CE1 Takes N = 38. Out of a corpus of 38 complete instances of CE1, bridge detonation, we 

successfully detected CE1 in all instances except one, yielding CE detection accuracy of 97.3%. The 

missed AE was a single instance of 1.1.c (as defined in Appendix A), which involves reconnaissance 

Scenario Event  

  

 Accuracy (Count)  FA Rates  

 Base Scenario  DS 1 alt tank  DS 2 smoke  N/A  

CE 1 Bridge Detonation  97.3% (37/38)  83.3% (45/54)  66.7% (18/27)  N/A  

CE 2 Bridge Crossing  92.6% (38/41)  insuff. data  insuff. data  N/A  

CE 3 Defensive Position  94.3% (49/52)  insuff. data  insuff. data  

  

N/A  

Incomplete CE 1  97% (36/37)      1/37  

No CEs  N/A     0/49  
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vehicles on the far side of the bridge leaving their posts after blocking traffic to rejoin the red entity 

tank column.  

Incomplete CE1 Takes N = 37. Out of a corpus of 37 instances of incomplete execution of CE1, we 

successfully detected all the relevant AEs in 36 of those cases, for a completed event detection 

accuracy of 97%. In these takes, the recce vehicles completed requirements for the first three AEs, but 

did not leave their positions at the south side of sensor area 3 to rejoin the tank column following 

traffic blocking in 1.1.b. It is also worth noting that in 7 of these 37 instances, NeuroPlex analyses 

identified an error in the NPSim ground truth log. In the set of 37 takes in which an incomplete set of 

CE 1 AEs occurred, there were 6 takes in which the ground truth data yielded by NPSim failed to 

recognize the occurrence of AE 1.1.b., in which a formation of reconnaissance vehicles take position on 

both sides of a bridge, obstructing the road at a distance of >100m from the ends of the bridge, so that 

POL traffic is blocked from entering the bridge.  There was only one false alarm at the CE level: 1/37 

(2.7%).  

Complete CE2 Takes N = 41. Out of a corpus of 41 instances of execution of all AEs underlying CE2, 

bridge crossing, we achieved event detection accuracy of 92.6%. There were three instances of failure 

to detect AE 2.1c, movement of the tank column toward the bridge.  

Complete CE3 Takes N = 52. Out of a corpus of 52 instances of execution of the 3 AEs underlying CE 3, 

defensive formation, we have completed event detection accuracy of 94.3%. There were three 

instances in which AE 3.1, reconnaissance vehicles take up positions on outbound roads away from the 

tank column, was not recognized due to proximity of POL entities to reconnaissance vehicles, the 

positions of those reconnaissance vehicles relative to each other once they took up their observation 

posts.   

No atomic or complex events Takes N = 49. There were zero false alarms on these takes. 

Complete CE 1 Takes with Domain Shift: Alternative T-72 Tank N = 54. We generated a corpus of 54 

instances of CE 1 execution by a group of tanks whose external coloring was a different camouflage 

pattern than the grey scheme upon which the YOLOv5 object detector was trained. Of these 54, we 

achieved event detection accuracy of 83.3% The missed AEs were nine instances of 1.1.c, which 

involves reconnaissance vehicles on the far side of the bridge leaving their posts after blocking traffic 

to rejoin the red entity tank column. In five of those nine instances, the OD failed to recognize the 

reconnaissance vehicles when they took flanking positions on opposite sides of the bridge to block POL 

traffic.  

Complete CE 1 Takes with Domain Shift: Wildfire Smoke N = 27. We generated a corpus of 27 instances 

of CE 1 execution while a fixed position wildfire generated smoke of limited opacity with wind pattern 

shifts cycling every 30 seconds, partially obscuring the sensor window’s exposure to targeted entities, 

and impacting the object detector’s ability to recognize the targeted entities. As was the case in the 

first domain shift example presented above, performance suffered most at detection of the two AEs 

involving reconnaissance vehicles taking position on opposite sides of the bridge to block traffic (1.1.b) 

and at detection of the pair of reconnaissance vehicles on the far side of the bridge departing their 

post to rejoin the tank column (AE 1.1.c). Failure to detect this AE 1.1.c. departure coincided with the 6 

failed instances of detection of the reconnaissance vehicles taking position on opposite sides of the 
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bridge per AE 1.1.b, for a total of 9 missed observations out of 27, or a completed event detection 

accuracy of 66.67% for the wildfire-introduced domain shift.  

In summary, results suggested that the re-engineered neurosymbolic pipeline augmented with 

expanded event processing language was an effective mechanism for detection of atomic and complex 

events in simulated military domain operations data. Recognition threshold targets were met for all 

CEs in the original operational environment, and false alarm rates were at or below acceptable 

thresholds. In the two separate instances of perceptual domain shift evaluated, recognition threshold 

results were mixed, with targeted recognition above 80% achieved in the alternative tank domain, but 

recognition at 67% in the domain shift instance involving a stationary wildfire occasionally obscuring 

line of sight between sensors and targeted entities.   

DISCUSSION 

Derivation of meaningful capability in this domain depends on several critical enablers.  Developers 

must be equipped to define military domain problems according to a hierarchy of complexity, 

consistent with a workable entity and event taxonomy. Work with experts under this effort provided 

insight into the optimal level of detail and mechanism to capture from subject matter experts, 

including the potential utility of capturing SME input using a combination of statements and a 

graphical user interface.  

It is critical to have an extensible architecture for generation of new scenario data featuring greater 

control and modification of terrain and structure elements, entity type and entity count, and a richer 

library of entity behavioral controls and goals. Mechanisms and alternatives for the generation and 

validation of ground truth data at the entity and event level were also researched.  

Generation of a specification language for capturing entity and unit behaviors and characteristics, 

defining events, and capturing SME input is immensely useful. This extended to mechanisms for 

working with multiple sensors, incorporating spatial abstraction, and description of temporal patterns. 

Mechanisms for object detection and tracking were also devised and improved.   

Finally, generalizability and deployability of such a solution depends heavily on understanding the 

appropriate and needed differences between baseline and domain-shifted data via testing and 

iteration. Understanding what to change and to what degree in order to model a perceptual or 

behavioral domain shift is critically valuable knowledge. This insight is important for ensuring that an 

appropriate reduction in baseline entity/event perception relative to an “unshifted” scenario modeled 

in the original operational environment is defined, in order to present a meaningful challenge to the 

CEP tool.   

CONCLUSION 

 

The NeuroPlex++ effort achieved virtually all its performance targets. More importantly, the work 

performed and innovations generated represent a highly promising avenue for further innovation. The 

team was able to generate insightful, relevant, and organized red entity scenarios and associated 

behaviors, defined in the bounds of a usable object and event taxonomy traceable up to TTP content.  
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The Unity-based NPSim tool is capable of generating high-count variable iterations of combined urban 

scenarios featuring plausible, variable goal-oriented behaviors by background and red entities, 

including constraints on how entities interact with each other.  The system also automatically captures 

ground truth for event occurrence and entity position frame-by-frame.  

The existing NeuroPlex tool was improved to accommodate viewing multiple objects per sensor 

sample, incorporate object locations, multiple sensors, and spatial abstractions, and to allow 

declarative expression of temporal patterns. The inclusion of an object detector and object tracker in 

NeuroPlex++ allowed the tool to expand beyond its previous limits of classification, and a mechanism 

for the introduction of perceptual domain shift.  

Finally, the team developed a mechanism for the OD-based recognition that a domain shift has taken 

place, which will serve as a critical enabler of future innovations. These include further maturation of 

the NPSim environment and capability, enhancements to the NeuroPlex++ system itself by direct 

incorporation of transformer models for neurosymbolic recognition of AEs, and improved self-training 

and neurally reconstructed logic [Manhaeve18]. The plan also calls for adoption of one of a series of 

promising OD uncertainty estimations to be used as the basis for determining when domain shift has 

occurred, necessitating SME updates, will expand the neurosymbolic CEP grammar, and deliver a UX 

by which SME expertise will be more readily captured and catalogued.  

AVAILABILITY OF DATA FOR RESEARCH PURPOSES: 

 

Interested researchers are advised that the data files and YOLOv5 model trained for this effort are 
available for download by interested researchers. Visit the following address to initiate a request for 
access to the data: https://github.com/nesl/ComplexEventDatasets 
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APPENDIX A: COMPLETE LIST OF ATOMIC AND COMPLEX EVENTS   

CE1: Complex Event 1 “Prepare to Destroy a Bridge” is concluded to have occurred when all the 

following AEs are satisfied. Occurrence of all these AEs takes place over a period of 5-10 minutes and 

involves detection of objects monitored by 3 different sensors.   

• 1.1.z. A formation of reconnaissance vehicles moves through a sensor area toward a bridge  

• 1.1.a. A formation of reconnaissance vehicles approach a bridge in the same sensor area  

• 1.1.b. A formation of reconnaissance vehicles take position on both sides of a bridge, 

obstructing the road at a distance of >100m from the ends of the bridge, so that POL traffic is 

blocked from entering the bridge.  

• 1.1.c. The formation on the far side of the bridge from the tank column moves away from the 

bridge  

The event as modeled for present purposes does not include the actual demolition of the bridge, only 

the performance of all the AEs that serve as prelude to the TTP in which the bridge would be 

demolished by detonation.  

CE2: Complex Event 2 “Move a Column of Tanks Across a Bridge” is concluded to have occurred when 

all the following AEs are satisfied. Occurrence of all these AEs takes place over a period of 5-10 

minutes and involves detection of objects monitored by 3 different sensors.   

• 2.1.z A formation of reconnaissance vehicles moves through a sensor area toward a bridge  

• 2.1.a. A formation of reconnaissance vehicles approach a bridge in the same sensor area  

• 2.1.b. A formation of reconnaissance vehicles take position on both sides of a bridge, taking 

position off the road, close to the ends of the bridge (within 100m of its ends)  

• 2.1.c. The tank column is detected moving toward the bridge.   

This combination of AEs serve as an indication that the column of tanks intends to cross the bridge.   

CE3: Complex Event 3 “Enemy forces attempt to set up a stationary defensive position” is concluded to 

have occurred when all the following 3 AEs are satisfied.    

• 3.0.a. A formation of tank and reconnaissance vehicles enters a sensor camera box with 

reconnaissance vehicles >10 seconds ahead of the tank column.  

• 3.1. The reconnaissance vehicle formation divides into groups moving away from the tank 

column by all available roads, taking up position between the tank column and any oncoming 

traffic  

• 3.2 The tank column leaves the road and takes a defensive position off-road in a line or an arc 

with all tanks <10m from each other pointing turrets in the same direction.  

This combination of AEs serve as an indication that the column of tanks is preparing a defensive 

stationary position.  

When all AEs underlying a given CE have occurred, that CE is triggered, indicating that the NeuroPlex-

enabled system should warn the hypothetical analyst in our use case of enemy intentions or actions to 

be relayed to higher authority.      
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APPENDIX B: SCENARIO VISUALIZATION EXAMPLES  

Recall that the Phase I scenarios were about making recognitions  
about red forces moving armor/tank columns in and around contested  
bridges. The phase I use case simulated a defense by blue forces of a  
series of bridges in the Ann Arbor MI metropolitan area. The original  
scenario included the decisions regarding blue force deployment in  
response to predictions of enemy intentions when moving through three  
different named areas of interest (NAI). A limited subset of this scenario  
was implemented as the Phase I AE/CE recognition challenge, using three  
simulated fixed position aerial surveillance assets described below in  
Figure 5 (repeated).   

As depicted in Figure 8, Sensor 1 was modeled as two concentric  
sensor viewing boxes directly north of Highway 23 of dimensions 500m  
x 280m and 350m x 100m. Sensor 2 (see Figure 9) was modeled using  
the same structure at a position 2000m north of the Enborne River, and  
Sensor 3 (Figure 10) was modeled as a viewing area of the same size, with  
watchboxes defined on the north and south sides of the river used to  
monitor for reconnaissance vehicles in advance positions.  

Figure 5. Fixed sensor positions   

Figure 8. Sensor Viewing Area 1   

Figure 9. Sensor Viewing Area 2  

Figure 10. Sensor Viewing Area 3  
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We defined three different CEs involving movement of a column of tanks and recce vehicles through 

Ann Arbor toward a bridge (see Appendix A). In all CEs, the column consisted of 4-6 tanks moving in 

two staggered columns with targeted separation of 20m between the nearest neighbor when in 

formation. The column was escorted by a set of 4 reconnaissance vehicles that moved in pairs, with 

targeted separation from the tank column of two minutes, and a targeted distance between the two 

pairs of reconnaissance vehicles of 50m during travel. All roads were also populated by a randomly 

distributed set of 400-500 civilian vehicles.  

  

 
Figure 11. Sensor 1 images of recce vehicles and tank convoy.  

  

 

Figure 12. Sensor 3 images of recce vehicles and tank convoy crossing bridge.  

  

 

Figure 13. Views of civilian vehicles from two sensors.  

 

 

Camera 1  –   2:15   –   T72 Convoy   Camera 1 – 0:36 – Recce Convoy  

Camera 3  –   6:39   –   Recce Convoy   Camera 3  –   6:39   –   T72 Convoy Arrives   

Camera 1 – 6:47 – CIV Vehicles  Camera 2 – 7:31 – CIV Vehicles  


