UNCLASSIFIED

Detection of Complex Events in Synthetic Aerial Sensor Data with NeuroSymbolic Reasoning

Henry Phillipst, Mani Srivastava?, Ben Purman?, Jeff Craighead?, Brian Wang?, Julian de Gortari Briseno?,

1 Soar Technology, Inc
4715 Data Ct, Ste 400
Orlando FL 32817
(734) 627-8000

henry.phillips@soartech.com

ben.purman@soartech.com
craighead@soartech.com

Lance Kaplan®

2 University of California at
Los Angeles (UCLA)
56-125B Engineering IV
Building

420 Westwood Plaza (Box
951594)

Los Angeles, CA 90095-1594
(310) 267-2098
mbs@ucla.edu
wangbril@g.ucla.edu
julian700@g.ucla.edu

Abstract

3 DEVCOM Army Research
Laboratory (ARL)

2800 Powder Mill Rd,
Adelphi, MD 20783

(301) 394-0807
lance.m.kaplan.civ@army.mil

To achieve overmatch in C4l versus peer adversaries, intelligence analysts reviewing sensor feeds need
help in identifying and classifying instances of adversary tactics, techniques, and procedures (TTP)
execution quickly and accurately across environments and domains. Detecting a few relevant entity
movements or clues from among a huge haystack of other contacts is extremely difficult, particularly
when those clues may be observed by different sensors, or separated in time by minutes or longer. TTPs
also change frequently, and relatively little training data may exist to help a system learn to detect and
recognize TTP instances. An approach is needed that can associate TTP indicators from across the wide
range of sensor data, while also addressing these limitations on training data.

This work describes NeuroPlex++, an expansion of a previously developed tool, NeuroPlex, which frames
TTP detection as a Complex Event Processor. A key innovation is the use of a hybrid, neurosymbolic
architecture to integrate data with subject matter expert inputs. This architecture uses deep neural
networks to efficiently map unstructured high-dimensional sensor data into symbolic percepts
embedded in space and time. A logical layer allows for human-encoded or system observed knowledge
incorporation in a machine learning pipeline. To demonstrate our approach, we rely on a flexible,
synthetic data testbed, and we instantiate hundreds of randomized instances of these TTPs intermingled
with synthetic clutter vehicles. We show detection results of NeuroPlex++ operating on sets of video

feeds generated with this synthetic data tool on realistic adversary TTPs.
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PROBLEM SUMMARY

In a future fight against a peer adversary, speed of decision-making and well-grounded situational
understanding are critical to battlefield effectiveness. The massive increase in airborne sensor capability
provides an opportunity to use sensor data to make quick and effective decisions, provided techniques
can be developed for helping ISR analysts manage the overwhelming volume of data produced. ISR
analysts need tools to integrate disaggregated data into a coherent picture of enemy activity, piecing
together disparate, atomic events and activities into more complex events that indicate higher-level
activities, like tactics, techniques, and procedures (TTPs). Maintaining tools to recognize TTPs in a
dynamic battlefield environment is particularly challenging because they change on short notice. While
data-driven analytics are important, a fully data-driven approach will only be successful at recognizing
yesterday’s TTPs because of its dependency on available training data. What is needed is an approach
that combines state of the art data-driven ML techniques with adaptation using human expertise to
recognize complex events and TTPs in a dynamic, battlefield environment, and to quickly update the
library of these TTPs.

Recognizing known TTPs is the first challenge. Complex Event Processing (CEP) [Luckham02] provides a
mechanism for the detection of real-world, complex events. The research community has made
significant progress recently in combining deep learning architectures with human domain expertise to
recognize complex events across sensor modalities using neurally reconstructed logic and arithmetically
differentiable circuits [Ahmed22] with minimal re-training, which can be used to enable adaptation to
domain shifts indicative of new TTPs. These TTPs can be modeled as a set of complex events that are
comprised of many atomic events distributed over a wide range of time and space, with those atomic
events defined by the positions and movements of entities and objects. Table 1 provides a list of
definitions levels in such a taxonomy spanning objects to events to TTPs.

Event Type Definition

Object Detection & * Event involving the detection of position and
Tracking movement of a single entity

Atomic Event (AE) * Event involving watchbox/tripwire and position

detection or separation among multiple entities

* AEs are intended to minimize state information
(over short intervals)

* AEs are defined by the location and movement of
objects/entities

Complex Event (CE) * Most narrowly defined event that would have tactical
relevance to an intel analyst witnessing it

* Stateful, capturing change over time

* Requires stitching info together from multiple
sensors, and over a longer window of time

* CEs are made up of AEs

Tactics, Techniques, & * Force level methods for accomplishing military goals

Procedures (TTP) e TTPs are made up of CEs

Table 1. Event Level Definitions
We next consider how typical sensor processing approaches and multi-domain sensor fusion inform this
CEP challenge, as well as strategies for generating useful data, a critical requirement for such a complex
event processor.
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Data-driven machine learning, particularly deep learning, is the foundation of the current state of the art
in processing raw sensor data. Open source solutions exist for image classification, object detection,
instance segmentation [Wang22] and activity detection [Heilbron15], and open-source tools are readily
available to integrate these object-level detections into tracks [LearnOpenCV, n.d.]. These methods are
highly related to current sensor processing methods and data fusion architectures, which are optimized
for processing large volumes of multi-sensor data. These methods are useful in building complex event
processors, but they are focused on timescales that are insufficient for recognizing complex events
spanning more than minutes or across sensor domains [Herath17]. The approach described here
incorporates the strengths of both approaches, relying on DL for atomic event detection, and on CEP to
recognize complex events spanning greater time and distance.

The Complex Event Processing [LuckhamO02] literature is similar to that of data fusion, in that complex
events are comprised of atomic events, though both types can be comprised of spatial, temporal and
other features. As defined here, complex events are those sufficiently aggregated to have tactical
relevance to an analyst, and that can be further subsumed by enemy tactics, techniques, and
procedures (TTPs). ATTP is comprised of a range of coordinated actions, but crucially for modeling, how
these actions present themselves in the environment is highly variable and dependent on specific
terrain, weather, sensors, sensing geometry, personality/behaviors of those participating, and the
interactions of all of these components.

Variations in TTP instances increase the amount of data required for data-driven approaches for CEPs to
achieve desired accuracy, and they underpin the lack of performance in data-driven approaches for long
duration activity detection. Volume of data with relevant complex events for multi-domain operations
(MDO) in the military domain has been a key limitation for developing and evaluating this technology for
use in DoD applications. The data itself is expensive to collect due to the number of assets (vehicles,
people, sensors) required, and data labeling is a well-known limitation in applying ML algorithms.

The lack of available suitable data remains a key limitation in developing CEP methods for this domain.
Existing datasets do not exist that capture multi-camera views of adversary tactics, separated over
relevant time and space and encompassing large numbers of people and vehicles. Synthetic data is an
appealing solution to the data availability problem, but a dataset must be sufficiently relevant and
realistic to be useful. Deep learning methods are exceptionally good at learning to process synthetic
data, but this performance doesn’t necessarily translate into real-world performance. Synthetic data
generation tools have been demonstrated to improve real-world performance of object detectors
[Craig21] and reliably predict real-world performance as a validation dataset [Martinson21]. Sensor and
environment data synthesis must incorporate perceptual realism, the degree to which the level of detail
captured in sensor feeds are modeled realistically, as well as behavioral realism, which means that the
entities within the simulation are executing behaviors within the constraints of the TTP, but also
exhibiting realistic variability. That is, enemy vehicles and people need to maintain a realism for how
they maneuver within the terrain, relative to each other, and within the scope of specified TTP. Neutral
entities, or pattern of life entities, also need to exist in the environment, and the way that enemy
vehicles interact with neutral entities needs to be realistic. Lastly, the sensors themselves, and how they
collect data, need to be consistent with expected data collection behaviors. These datasets must
incorporate both positive and negative examples of AE/CE presence in the training data. To provide
sufficient quantity and variability, the synthetic data must contain variable iterations of scenarios
involving execution of targeted AEs and CEs along with negative examples for both red entities and
background/pattern of life (POL) entities, yielding ground truth logs for both event occurrence and
entity placement at the video frame level.

These data-intensive approaches must also address the problem of resilience to changes in those TTPs
[Tenzer22] which would demand immediate incorporation into CEP models. This means that one of the
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most important functions of such a system would be the ability to adapt to new tactics and
environments quickly, and without large amounts of additional training data. This can be achieved
through the introduction of neurally reconstructed logic (NRL) into the CEP, to capture SME information
in symbolic form, restructured and quantified using arithmetic circuits, and then use it as the basis for
retraining neural layers to recognize the new events captured in the SME input. This translation of
human expertise must be managed by the use of a customized CEP grammar for direct incorporation of
domain expertise in symbolic information coded into arithmetic circuits to be used to retrain neural
components without new data beyond what the SME provides, in order to ensure the detection system
remains useful in the face of rapidly evolving enemy TTPs.

PREVIOUSLY DEVELOPED CEP APPROACHES

Complex event processing (CEP) refers to a set of computational techniques with roots in time-series
databases and programming languages but now used in the Internet of Things (loT) settings and cyber-
physical systems (CPS) as well, developed for processing incoming real-time events to extract meaningful
information. The incoming events indicate some activity or change in the state of the world and could be
in various forms, such as a sensor reading or an SMS message. Incoming events are analyzed and
correlated to discover and infer complex events, which are rigorously defined in some formal language as
patterns of events involving both sets of events and relationships between events, such as timing,
location, and causality. Under the hood, state-of-the-art CEP systems use efficient pattern matches that
scale to high-speed event flows and can detect patterns of multiple events occurring over long periods of
time. This process, referred to as complex event recognition (CER), may also incorporate uncertainty and
approximate matching of event patterns [Alevizos17]. For example, a distributed attack on a
cyberinfrastructure could be inferred via a pattern involving suspicious events at multiple network nodes
within a short time interval. Likewise, a hospital may do CEP over sensor data to detect and remedy health
safety violations. Typically, the detection of a complex event in turn triggers downstream actions by a
human or by an automated system. Moreover, the complex events may be organized in an event
abstraction hierarchy. Relevant to the proposed research, a key limitation of state-of-the-art CEP systems
is that they are designed to work with input events that are structured and low-dimensional. So while
they work well for enterprise applications with events such as a temperature going above a threshold, a
customer entering a website, a person leaving a building, etc., they cannot directly infer complex events
from unstructured and high-dimensional data such as video streams, natural language text, acoustic
sensor data, etc. Also, these systems depend on expert-designed event patterns and cannot learn from
data. While potential methods for inductive logic programming (ILP) [Law20] could be extended to learn
event pattern rules for CER from examples of input event sequences and corresponding complex events,
current ILP methods do not handle time and location as first-class entities.

Neural approaches to detecting complex activities and events: In deep learning, recurrent neural
networks such as LSTM are used to monitor temporal data for purposes of event detections and activity
recognition. However, there are limitations that make just using LSTM (or other recurrent neural
networks) to predict complex events not a good approach. First, modeling long-term dependencies
requires memory and with typical sensor sampling rates can grow to large amounts and also require huge
volumes of data to learn from. As a result, even large RNN models are limited to a few hundred timesteps
and a few seconds with modalities such as video and audio [Singh16, Cakirl7]. Even architectures such as
Temporal Convolution Networks (TCN) [Leal6] and Transformers with attention mechanisms [Dail9,
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Zhou21] do not help much with memory reaching ~10s and ~1K steps. Besides the challenge of limited
temporal memory, the purely neural approaches also suffer from models that are not inherently
interpretable, requiring posthoc explanation methods that generally work by highlighting salient features
[Chattopadhay18, Lundbergl7], providing approximate local models that are interpretable [Ribeiro16], or
offering relevant examples from the training set [Jeyakumar20]. Moreover, the interfaces between layers
that are the components of end-to-end deep learning models are generally not human-comprehensible,
which makes it difficult to reuse them in the way symbolic algorithmic approaches allow.

Neurosymbolic approaches to detecting complex activities and events: In research conducted under the
US-UK DAIS ITA program (https://dais-legacy.org), we introduced neurosymbolic architectures for CEP
[Vilamala20, Vilamala21, Vilamala23, Xingl9, Xing20] that combine symbolic reasoning and neural
representations to create a whole that is greater than the sum of its parts. The intuition was that
differentiable and over-parameterized neural components learnt from data can efficiently process
sensory inputs to create precepts to assist symbolic reasoning and make it scalable, while the symbolic
components expressed as logic rules can provide interpretability and analyzability, enforce constraints at
runtime, allow for injection of human knowledge, and act as regularizers that guide the learning of neural
components. We investigated several variants with different characteristics as shown in Figure 1. Starting
from a stream of raw sensory data, potentially from distributed multimodal sensors, neural networks are
used for summarizing the sensory perception in a form that can be digested by either a differentiable
probabilistic logic program allowing for the gradient to be back-propagated [Vilamala20] or by another
neural network that has been trained in a teacher-learner fashion [Hinton15] and then frozen while
training the entire pipeline [Xing20]. Other research in the DAIS-ITA, while not in the context of CEP,
showed that neurosymbolic approach also offers advantages of robustness to domain shifts
[Cunnington21].

Detection
complex events
with fixed logic

Perception A-ANC  CI'—=0

of simple events - é\h [ —A©
. -
~ ol I DeepProbCEP [

Predicted
Complex Event

Gradient
back-propagation

Figure 1. Neuroplex and DeepCEP Neurosymbolic Architectures for Complex Event Processing
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While providing promising results [Vilamala20, Vilamala21, Xing19, Xing20], the neurosymbolic paradigm
for complex event processing in the initial research is restrictive and inflexible: it uses neural networks to
map high-dimensional data to a fixed set of pre-defined low-level concepts or events [Jeyakumar23],
which are then centrally analyzed symbolically by an extensible set of probabilistic logic rules that have
no concept of time and space. Moreover, the neurosymbolic architecture is constructed for a fixed
complex event specification, with a new complex event requiring a new model to be constructed from
scratch. The project aims to make research advances that address these limitations. While the DAIS-ITA
research on neurosymbolic methods for complex event processing was groundbreaking [Vilamala20,
Vilamala21, Xing19, Xing20], the broader concept of integrating neural and symbolic approaches has
previously been studied in Al. A first wave of research in 1990s sought to convert symbolic models into
neural networks for further fine-tuning with data [Towell90], extract symbolic programs from neural
networks learnt from data for further fine-tuning by domain experts [Towell93], and combine the
preceding two to go back and forth [Shavlik94]. These early attempts at neurosymbolic architectures
however did not have an impact as neural networks were not yet sufficiently performant for real-world
usage due to lack of training data and hardware accelerators. In recent years, with real-world deployments
of DNNs leading to concerns about their limitations [Bengio19], there has been a revival of interest in
neurosymbolic approaches [Besold17, Chaudhuri21]. In the field of program synthesis there has been the
emergence of neurosymbolic programming and its applications in symbolic regression for scientific
discovery [Cranmer20], assistive tools for software developers [Ellis17], control of autonomous systems
[Xu18], etc. It has the goal of synthesizing a program with both symbolic and neural components from a
high-level task specification while simultaneously meeting hard logical constraints, approximately fitting
a dataset, and generalizing to novel inputs. The recent research in neurosymbolic programming has
studied both neurosymbolic learning algorithms and neurosymbolic program representations, providing
useful insights such as the use of metalearning to train neural networks that generate the high-level
program architecture [Balogl6], and methods to distill neural networks into symbolic programs
[Vermal8] and to relax symbolic programs into neural networks [Vermal9, Cui2l]. Another relevant
strand of recent research on neurosymbolic systems is represented by [Valkov18, Murali19, Cingillioglu21,
Cunnington21] which all operate on images and process them with neural networks followed by symbolic
logic to perform tasks such as visual discrimination and reasoning over objects in the image. While
relevant, neither the research in neurosymbolic program synthesis nor the research in visual reasoning
over images, address challenges in neurosymbolic complex event processing for situational awareness we
target. It requires neurosymbolic architectures that process sensory data streams, incorporate
spatiotemporal information, account for uncertainty, meet real-time requirements, be resilient to
adversarial actions, and adapt to changing knowledge. Besides our prior work, research such as
[Apriceno22] and [Niecksch23] have recently also explored complex events over unstructured sensory
data from theoretical and experimental systems perspective.

NEUROPLEX++ DETECTION AND RECOGNITION ENGINE

Development and refinement of the detection and recognition engine called for incorporation domain
expertise and data-driven learning, as well as the need to demonstrate classification performance
across the CEP solution. The key challenge was ensuring that the components that constitute the
perception layer of the architecture and process the raw, unstructured, high-dimensional sensory data
into AEs are appropriately tuned for military relevant AEs. The existing NeuroPlex system [Vilamala21]
targeted CEs in civilian settings with relatively simple AEs that only required object classification in a

DISTRIBUTION A: Approved for public release. Distribution is unlimited.
6



UNCLASSIFIED

video frame, acoustic event classification in sound, and human motion activity in inertial data, all of
which it was able to perform using off-the-shelf pre-trained DNN models for object or event
classification with reasonably high accuracy. However, the existing version of NeuroPlex did not
include native capabilities for detecting and classifying military-relevant AEs in scenes with multiple
dynamic objects. AE detection in such scenes requires detecting, classifying, and localizing objects in
video frames; then tracking them over time across frames; and performing spatiotemporal reasoning
across time, space, and multiple sensor data streams. The existing system lacked these capabilities and
had to be enhanced.

The required capabilities were introduced by re-engineering the neurosymbolic pipeline to expand its
capabilities as well as devising a language for specifying the AEs and CEs to handle necessary spatial
concepts such as trip wires, watch boxes, etc. The neurosymbolic pipeline consists of two stages: a
single-pass object detection DNN for each sensor which outputs a set of objects, including their type
and bounding boxes [Wang22], and a two-part symbolic processing stage. The first part of symbolic
processing performs tracking and reidentification of objects across video frames while undertaking
rule-based measures to mitigate detection and tracking errors, and the second part detects the AEs
and the CEs using finite state machines (FSMs) generated from the AE/CE specification language.

The neurosymbolic pipeline thus expands roles for both the neural and the symbolic stages relative to its
predecessors: the neural processing now performs detection and localization instead of just
classification, and the symbolic processing now performs tracking, reidentification, run-time error
mitigation, and spatiotemporal reasoning relating to AE/CE detection instead of only detecting temporal
patterns that constitute CEs.

Incorporating multiple objects, spatial reasoning, and temporal patterns. While evaluation of complex
spatiotemporal events is typically more effectively done with first-principal models that are maximally
generalizable, analysis of high-dimensional unstructured sensor data is typically better approached by
data-driven models. The neurosymbolic approaches represented by DeepProbCEP [Vilamala23] and the
original NeuroPlex provide a balanced combination of the advantages of these approaches.
Unfortunately, first generation neurosymbolic CE approaches targeted settings that required only object
classification (no detection, localization, tracking, etc.) and detection of temporal patterns over
sequences of classification labels (no spatial reasoning). This required an improvement beyond the use
of neural proxies interpreting symbolic information into exact arithmetic circuits to backpropagate new
information about CE prediction into the trained object and event classifier(s) [Gan18].

These needs were addressed by the introduction of an object detector based on YOLOVS5, a single-pass
DNN based model, discussed in greater detail below [Zhu21]. This served as the basis for development
of an object tracker, which re-identifies and tracks objects across frames, and mitigates errors and
confounders in object detection. Two symbolic units were designed for event detection:

« AE Detector: Detects spatial patterns of objects over short time intervals using abstractions of
watch boxes and trip wires.

*  CE Detector: Detects temporal patterns of AEs occurring asynchronously and irregularly over long
spans of time.

The CE specification language was expanded to accommodate multiple objects per sensor sample,
incorporate object locations, multiple sensors, and spatial abstractions, and allow declarative
expression of temporal patterns. This modified language was used as the basis for analysis of the
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performance of the CE detection performance under various conditions. Functionality of the system is
outlined below in Figure 2.

object spatial patterns temporal patterns
classification regression re-id over short duration over asynchronous AEs

. L {<tvpe, bbox:-}.

Sensor . Obiect Detection RObUSt Predicted
Samples g Tracker Detectlon Detectlon Complex Events

Figure 2. Implementation of neurosymbolic reasoning.

Object Detection. The YoloV5 model we used for object detection was trained as follows: We used an
off the shelf, state of the art detector with a well-supported software base [Zhu21]. This tool was
trained on 8,800 images across 5 object classes, including a T-72 tank with a neutral color scheme, a
BTR reconnaissance vehicle, and three different classes of civilian vehicle. Training was started with a
network of medium size, using a v6 model. The outputs yielded by the detector included a bounding
box for each targeted entity, object confidence, and SoftMax confidence estimate for each class. This
capability informed the phase Il plan for object tracking using Kalman Filters. Figure 3 is an illustration
of the output of the Object Detector performance, including entity class detected and confidence level
associated with the classification.

Figure 3. YoloV5 Object Detector Class and SoftMax onf/dence Level Output

Generalizing performance to operational conditions for which the system was not specifically trained.
When conditions change, the existing library of entities, AE, and CEs a CEP system has been trained to
recognize may no longer be sufficient. Domain shifts can take the form of new environments or
conditions under which a TTP is exercised or attempted, they may involve the modification or
adoption of entirely new TTPs or unit-level behaviors. They may simply involve changes in the
reliability, availability, or periodicity of sensor data upon which event recognition was based. Any such

DISTRIBUTION A: Approved for public release. Distribution is unlimited.
8



UNCLASSIFIED

changes may mean that the CEP system will need to adapt or be modified in order to work in this new
domain — whether by modification of detection criteria, specifications of new entities or events, or
environmental changes that force redefinition of AE/CEs in the existing library.

We argue that domain shifts to be accommodated will fall into three broad categories, perceptual,
behavioral, and environmental shifts. If the causes of uncertainty triggers appear to be driven by the
inability of the sensor(s) to detect behaviors that are relatively unchanged, the task for the SME may be
to define or revise existing detection criteria, accommodating a perceptual domain shift. Perceptual
domain shifts will call into question whether the AEs and CEs targeted by the system’s existing models
will still be detected based on reduced signal quality. For example, if a sensor is occluded by weather
conditions so that the sensor can only detect 50% of the behaviors indicating a red force attack is
imminent, should the system infer an attack likely if 40% of the entity behaviors expected are observed
by the sensor? The SME will make this determination and input guidance into NP++ using the CEP
grammar UX. Conversely, a behavioral domain shift will involve the definition of new entities, behaviors,
potential modifications of AE/CE, and respecifications of the rules governing interaction of entities with
each other and their environments. Environmental domain shifts can be defined as changes in the
terrain or environment in which the sensors are deployed causing degraded performance for the neural
components. The impact of terrain or environmental changes can be conceptualized using a
combination of perceptual or behavioral effects, given their potential impacts on sensor performance
and how, where, and when entities move.

SYNTHETIC DATA GENERATED FOR PERFORMANCE EVALUATION

Development of Scenarios and TTP Variations. The team developed systematic, scalable, labeled
scenario files containing relevant, accurate, varied iterations of background, AE, and CE behavior in
appropriate environments by red and background POL entities for training and evaluation of the
NeuroPlex++ system.

Relevance of Use Case. The first challenge was development and simulation of an appropriate use case
that serves as a tactically relevant, plausible instance of CEs underlying adversary TTP demonstration
across operational conditions. The use case also needed to provide an operational example of multiple
CEs and underlying AEs exemplifying the target TTP(s), in the presence of background entities. The
scenario data representing this use case had to be implemented as an accurate representation of
entities executing the AEs and CEs. These behaviors had to be modeled appropriately as raw sensor
data for ingestion by NeuroPlex++.

Scenario Modeling. Scenarios needed to be designed that would provide demonstrations of tactically
relevant atomic and complex events that could be detected by simulated sensors [Xing21]. The AEs

and CEs needed to be implemented in an appropriately modeled environment, that afforded the right
level of fidelity for environmental features and details constraining entity movement. The environment
needed to provide a realistic instance of the level of granularity with which roads, features, and
entities could be described while maintaining a reasonable burden of processing time for generation
and rendering. The acuity, zoom level, and altitude of the simulated airborne sensors to be taken into
account as well, to ensure that the entities targeted for recognition were depicted using an
appropriate number of pixels so as to provide a meaningful challenge for a trained object detector
[Sun21].
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Data Synthesis. The tools and processes to be used for synthesis of the environments, entities, and
sensor feeds needed to be defined such that the scenarios in which AEs and CEs were modeled could
be generated at scale, with appropriate entity behaviors, goals, waypoints, and sources of variation
across iterations defined for both red and background entities [Stensrud12]. The scenario files
generated also needed to include a usable number of negative examples in which AEs and CEs did not
occur for purposes of training. Finally, the data needed to be labeled appropriately with ground truth
for entity positions and event occurrence.

As depicted below in Figure 4, the team developed a series of scenarios for Phase | taken from real
world conflict use cases in Eastern Europe. As was widely depicted in global news in 2022, the problem
of making predictions about red forces moving armor/tank columns in and around contested bridges
was of significant tactical relevance to the War in Ukraine. Elements of these real-world situations were
adapted for the phase | use case, simulating a defense by blue forces of a series of bridges in the Ann
Arbor MI metropolitan area. The original scenario included the decisions regarding blue force
deployment in response to predictions of enemy intentions when moving through three different
named areas of interest (NAI).

Figure 4. Tank column bridge scenario model

Conditions of the scenario were as follows:

* Orientation: Enemy armored forces are moving west along Highway 14 with the intent of crossing
the Enborne river.

« Situation: The Regiment is established West of Highway 23 in a blocking position south of the
Enborne River.
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* Mission: On order Battalion forces establish a blocking position south of the Enborne River (in view
of Hwy 23 bridge) in order to drive enemy armored forces to a western river crossing (in view of
downtown).

« Execution: The Regiment has emplaced obstacles at the intersection of Ply Rd and Highway 23
(NAI 2) with the intent of pushing the enemy toward the western river crossing along Huron Pkwy.
The Battalion will maintain its blocking position south of the river while the Regiment engages the
enemy along Huron Pkwy.

* Admin and Logistics: All re-supply and logistics requirements are handled at the Regimental level.

* Command and Signal: Battalion retains OPCON of all organic fire support, aviation, and ISR assets.

A limited subset of this scenario was implemented as the initial AE/CE recognition challenge described
here, using three simulated fixed position aerial surveillance assets between NAls 2 and 3.

Development of Complex Event Taxonomy. Behavior of the entities used to define the AEs and CEs
depicted next was organized using a taxonomy developed for this effort, which began with the detection
and tracking of objects or entities as the base level recognition task. Sensors were modeled as
electrooptical cameras that recognized presence of entities for which they were trained at the individual
frame level. These data were not used to emulate sensor tracks for purposes of this effort. Detected
objects were used as the basis for defining AEs, which were triggered by watchbox or tripwire crossing
by targeted entities with different relative positions or separation from other specific entities (i.e.,
distance from the other tanks in a column). AEs were used here to capture the location and presence of
single or multi-entity groups over short spatio-temporal distances. AEs were aggregated into CEs, which
required the stitching together of information from multiple sensors, over greater periods of spatio-
temporal distance. CEs were designed to capture change over time, and are defined as the most
narrowly specified multi-entity events that could be expected to have tactical relevance to an intel
analyst witnessing them.

In other words, a CE is one that an attentive analyst would be expected to recognize and attribute
tactical implications of a set of disparate movements by multiple entities across time and sensors. CEs
are the highest order events modeled in the Phase | data, but they are designed to be consolidated into
military tactics, techniques and procedures (TTPs).

Development of AE/CE Scenarios. Using this taxonomy, and a limited subsection of the original scenario,
we implemented the following set of Complex Events and underlying atomic events. Using a portion of
the Ann Arbor map spanning NAls 2 and 3, we modeled three fixed-position aerial sensors at a simulated
altitude of 400’ above ground level, sufficient to render objects for which our YoloV5 object detector at
a number of pixels needed to achieve plausible performance levels [Martinson21]. If the simulated
altitude had been raised much higher, we would have been able to observe many more entities
simultaneously in each sensor’s field of view, but object detection would have suffered as a result, likely
rendering the detection of all events impossible.

The sensor watchboxes rendered and specific terrain captured in the fields of view of each simulated
sensor are depicted in Figure 5 (See Appendix B for more detail on these modeled sensor positions).
Sensor 1 was modeled as two concentric watchboxes directly north of Highway 23 of dimensions 500m
x 280m and 350m x 100m. Sensor 2 was modeled using the same structure at a position 2000m north
of the Enborne River, and Sensor 3 was modeled as a viewing area of the same size, with watchboxes
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defined on the north and south sides of the river used to monitor for reconnaissance vehicles in
advance positions.

. ‘v"
| =,
: ; %:'.—

Figure 5. Fixed sensor positions

We defined three different CEs involving movement of a column of tanks and recce vehicles through
Ann Arbor toward a bridge. In all CEs, the column consisted of 4-6 tanks moving in two staggered
columns with targeted separation of 20m between the nearest neighbor when in formation. The column
was escorted by a set of 4 reconnaissance vehicles that moved in pairs, with targeted separation from
the tank column of two minutes, and a targeted distance between the two pairs of reconnaissance
vehicles of 50m during travel. All roads were also populated by a randomly distributed set of 400-500
civilian vehicles. Below is a summary description of each complex event. Exact details are provided in
Appendix A.

* CE1 Column preparing to detonate the bridge, as indicated by reconnaissance vehicles taking
positions on both sides of a bridge in pairs, in the road, blocking civilian traffic, at a distance of
>100m from the ends of the bridge, with the tank column not moving toward the bridge, and the far
pair of reconnaissance vehicles rejoining the column after two minutes in position.

* CE2 Column preparing to cross the bridge, as indicated by reconnaissance vehicles taking positions
on both sides of a bridge in pairs, off road, not blocking civilian traffic, with the tank column
moving toward the bridge.

*  CE3 Column taking up a defensive position, as indicated by reconnaissance vehicles moving in
pairs in all directions away from a planned defensive position and stopping to monitor
traffic/threats from fixed positions away from the tanks. Tank column breaks formation and forms
into a line or an arc between the sets of reconnaissance vehicles.

Each scenario “take” consisted of video feeds representing the same 10 minute period captured by 3
stationary airborne sensors. Red entities consisted of a column of 4-6 tanks escorted by a set of 4

DISTRIBUTION A: Approved for public release. Distribution is unlimited.
12



UNCLASSIFIED

recce vehicles. POL entities consisted of civilian auto traffic. Occurrence of all these AEs took place
over a period of 5-10 minutes and involved detection of objects monitored by 3 different sensors.

Development of the Unity Simulation Environment, NP Sim. The system used to generate the scenario
data described above was a Unity-based capability called NP Sim. This tool is capable of defining the
entities to be modeled in a scenario, along with their goals and behaviors managed by a scenario
controller as depicted below in Figure 6. More importantly, it automates the process of scenario
generation, execution, and recording, enabling the generation of an unlimited number of variable
iterations of scenarios involving targeted behaviors, and boundaries for their variation across scenario

iterations.
{ M
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Figure 6. Architecture of the NP Sim tool.

The behavior of the red entities was operationalized as a set of emergent actions based on a waypoint
following behavior, an obstacle avoidance behavior,[Heilbron15] based on assigned destination
targets, interactions with each other and POL vehicles, and starting locations on the map. Refined
movements at critical points for increased probability of AE/CE engagement were defined using
clusters of waypoints. Red entity routes were governed by a low density directed graph of waypoints,
selected using in the entity controller as part of a state machine defined as part of the scenario. The
selected entity goals directed the order in which targeted actions, including all AEs and CEs, were
attempted within the scenario.

In functional terms, the most important parameter used to manage red entity formation adherence
was entity speed. Tanks and reconnaissance vehicles were assigned grouping characteristics, with each
group assigned a random speed within a specified range. Individual vehicles within groups had
interval/separation targets they attempted to adhere to by varying their speed, and direction insofar
as directional variation was necessary to avoid collisions.

This process also supported the generation of more sophisticated POL entity traffic behaviors,
ensuring comparability between POL/background AEs and red entity AEs. POL and red behavioral
comparability in the synthetic data was necessary to provide a meaningful recognition challenge for
the tool. POL entities utilized a high-density waypoint following system built along roads via COTS
traffic asset for Unity, the Gley Traffic System.
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POL vehicles started at random positions on the roads anywhere on the modeled terrain. Red Entity
starting points were variable, but all north of sensor 1 in this data corpus. Note that additional
variation was introduced by the emergent behaviors that resulted from the interaction of the behavior
controller and the Unity physics system. This introduced variation across iterations due to this
interaction regardless of whether the scenario controller, the entity planner, and the entity controller
all dictate identical constraints and direction to the entities modeled within a scenario. So while seed
values dictating how an NPSim scenario can be held static between takes, there are no full scenario
iterations that can ever be completely deterministic due to the interaction of these entities with each
other [Vaswanil7]. The non-deterministic nature of these scenario iterations is desirable due to the
contribution it makes to execution variability (within constraints) across scenarios, but it does mean
that there can be iterations where targeted behaviors and goals defined by the scenario controller and
entity controller are not successfully executed [Heilbron15, Herath17]. The incidence rate of failure to
execute assigned behaviors across iterations appears to be extremely low, which could be verified
using the ground truth data also produced by NPSim.

Data Labeling. NPSim ground truth information is captured in a log file generated for every scenario
iteration. This file captures when the state machine transitions between states. The process by which
entity behavior is modeled across iterations includes explicit, translatable criteria for instances where
mapped AE and CE events occur and capturing entity positions frame by frame. This readily yields
geographic coordinates within a sensor box for location of all AEs, CEs, and targeted entities (in phase |,
limited to red entities) along with a timestamp at the frame level for the metadata produced.

Data Corpus Generated. The list below in Table 2 summarizes the 311 scenario variations generated to
model each of the complex events described above, as well as incomplete CE demonstrations or
scenario takes in which no CE was modeled. Metrics used for comparison and for exploratory purposes
are discussed next, along with results of all detection and false alarm analyses conducted on original
environment and domain shifted scenarios. Two varieties of perceptual domain shift were implemented
as a representation of our goal to generalize NeuroPlex++ performance to different operational
environments:

a. Intermittent wildfire smoke introduced as an occlusion that blocks sensor visibility of entities

b. Variation of hostile entity appearance: We introduced variations of the T-72 tank design for which
YoloV5 Object Detector (OD) was not trained

Multiple variations of smoke opacity and tank design were introduced to ensure that the domain shift
change provided an appropriate challenge to the YoloV5 OD. Initial versions of each resulted in zero
object recognition in the wildfire smoke example, and 100% object recognition using the first version
of the T-72 tank variation, neither of which were useful levels of baseline performance for assessing
functionality of the symbolic detection algorithms designed for AE and CE detection. Examples of both
types of perceptual domain shift introduced are illustrated below in Figure 7.
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CE Takes Variations

1 38 complete 118 variations:

37 incomplete

54 DS alternate tank
27 DS smoke

2 41 complete 3 DS alt tank
0 DS smoke

3 52 complete 2 DS alt tank
1 DS smoke

None 49 no AEs 3 DS alt tank
4 DS smoke

Table 2. Data corpus by Complex Event
Note: alt = alternate; DS = domain shifted.
Scenarios counts in boldface are reported in subsequent analyses

Figure 7. Examples of perceptual domain shift introduced in scenarios

While the work reported here is limited to demonstration that CEP detection could be maintained
under domain shift, a far more important question for continuation of this work concerns how system
recognition of domain shift could be defined and triggered. As a result of our data synthesis and
architecture updates, the team was able to specify a needed mechanism for recognition of conditions
under which generalization to other environments or recognition of new tactics was needed.

Pending improvements will associate quantitative uncertainty measures for neurally derived object
detection. Multiple techniques for one-stage object detection have already been discussed, including
the approach introduced by He [He19] that focused on uncertainty in bounding box regression, and
that focused simultaneously on two sources of variance: bounding box transformation and
localization. Other researchers [Kraus19] have looked at dropout as an approximation technique for
prediction distribution of a Bayesian NN, while Lyu [Lyu16] combined deep ensembles and Monte
Carlo dropout for uncertainty estimation. These one-stage uncertainty estimates will be assessed first
as candidates for definition of domain change thresholds. Failing this, the viability of multi-object
tracking algorithm uncertainty indices will be investigated. These uncertainty estimates will be used to
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define thresholds indicating to the system that a domain change has occurred, and that SME updates
to the entity and event library using the CEP Grammar UX are urgently needed. Those SME updates
should make it possible to accommodate all types of domain shift, while maintaining CE recognition
accuracy with a minimal set of SME-defined training examples.

ASSESSMENT OF NEUROPLEX++ PERFORMANCE AT COMPLEX EVENT DETECTION

The solution described relied on neurally trained tools for detection of relevant objects, and symbolic
reasoning for the detection of AEs and CEs. As stated above, the improvements to the first generation
neurosymbolic CE approaches previously developed under DAIS ITA were not suited to detection,
localization, or tracking, and were not capable of spatial reasoning; they had previously been used for
classification and temporal reasoning only. The improvements we introduced to address this need
includes neurally based object detection using the single-pass YOLOv5 DNN model. The updated
system also includes a robust tracker that reidentifies and tracks objects by comparing the changes in
the relative positions of object IDs across adjacent frames and mitigates errors and confounders in
object detection.

We also redesigned the CE specification language to support multiple objects per sensor sample,
object locations, multiple sensors, and spatial abstractions, and allow declarative expression of
temporal patterns. We used this to analyze and improve CE detection performance under various
conditions. Event detection was managed by two symbolic units designed for this purpose: an AE
Detector that detects spatial patterns of objects over short time intervals using abstractions of watch
boxes and trip wires, and a CE Detector that captures temporal patterns of AEs that can occur in many
different orders and with different temporal separation over long spans of time. Event detection
accuracy rates and false alarm rates were measured according to the operational definitions below.

1. Accuracy: The proportion of takes for which the identified CE and underlying AE set matches or
fails to match ground truth information®.
2. Missed detections: number of AEs or CEs which were missed but occurred in the ground truth.

+ Complex Event detection accuracy and missed detection count are reported for the 38, 41,
and 52 takes of complete occurrence of the AEs contributing to CEs 1, 2, and 3, respectively, in
Table 3.

» Complex Event detection accuracy and missed detection count under domain shifted
conditions are reported for the 54 CE1 takes involving wildfire smoke and the 27 CE1 takes
involving alternative tank coloring schemes on which the OD was not trained.

3. False alarms: number of AEs or CEs which the NeuroPlex++ system detected but did not occur in
the NPSim ground truth logs.

* False alarm analyses were only conducted on the takes with incomplete execution of CE
contents (37 takes involved subsets of the AEs contributing to CE1) or those with zero
intentionally included AEs (the 49 takes listed in Table 3)

L1t is worth clarifying here that in this specific set of scenarios, the CEs we defined required the detection of all
component AEs, but in other settings and circumstances, this may not be the case.
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Metric thresholds for detection accuracy were defined using a synthetic dataset representing three
different CEs, each composed of at least three different AEs, with AE elements separated by space and
time, and captured by multiple sensors. Thresholds for detection accuracy for each CE was 90% in the
initial operational environment modeled, with a false alarm rate of no more than one false alarm per
hour (assuming some constant rate of evaluation over time). The CEs were then to be modeled in a
second operational environment, and the CE detector performance was evaluated in this second
environment after being provided minimal training data. Detection accuracy threshold in the second
operational environment was 80%.

Summary results are provided below in Table 3. The team achieved detection accuracy targets for all 3
implemented CEs, across a total of 131 three-sensor scenario executions, as well as another 37 takes
in which a subset of the AEs making up CE 1 were incorporated. False alarm rates across 86 takes
comprised of: an incomplete set of AEs underlying CE 1 (N = 37); or takes in which no red entity AEs
were included (N = 49) were 1 and 0, respectively. In the initial operational environment, all
performance thresholds were met.

The additional operational environments used to test the performance of NeuroPlex++ for
environments in which it had not been explicitly trained included 54 takes of CE 1 execution by a
variation of the T-72 tank with a different paint scheme on which the YOLOv5 DNN had not been
trained and 27 takes of CE 1 in which smoke from a stationary wildfire periodically obscured visibility
of ground entities to the sensors. Execution of AEs underlying CE1 were accurately detected in 45 of 54
cases involving the alternate T-72 paint scheme, for an accuracy rate of 83.3%. In the case of the
wildfire smoke, all AEs underlying CE1 were detected in 18 of 27 cases, for a detection accuracy rate of
66.7%. In the modified operational environments, therefore, detection accuracy was mixed, with the
80% threshold achieved in one environment, but not the other.

Scenario Event Accuracy (Count) FA Rates

Base Scenario DS 1 alt tank DS 2 smoke N/A

CE 1 Bridge Detonation | 97.3% (37/38) | 83.3% (45/54) | 66.7% (18/27) | N/A

CE 2 Bridge Crossing 92.6% (38/41) | insuff. data insuff. data N/A
CE 3 Defensive Position | 94.3% (49/52) | insuff. data insuff. data N/A
Incomplete CE 1 97% (36/37) 1/37
No CEs N/A 0/49

Table 3. Summary accuracy and false alarm rates.
Note: CE = Complex Event, DS = Domain Shift, FA = False Alarm, insuff = insufficient
Complete CE1 Takes N = 38. Out of a corpus of 38 complete instances of CE1, bridge detonation, we

successfully detected CE1 in all instances except one, yielding CE detection accuracy of 97.3%. The
missed AE was a single instance of 1.1.c (as defined in Appendix A), which involves reconnaissance
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vehicles on the far side of the bridge leaving their posts after blocking traffic to rejoin the red entity
tank column.

Incomplete CE1 Takes N = 37. Out of a corpus of 37 instances of incomplete execution of CE1, we
successfully detected all the relevant AEs in 36 of those cases, for a completed event detection
accuracy of 97%. In these takes, the recce vehicles completed requirements for the first three AEs, but
did not leave their positions at the south side of sensor area 3 to rejoin the tank column following
traffic blocking in 1.1.b. It is also worth noting that in 7 of these 37 instances, NeuroPlex analyses
identified an error in the NPSim ground truth log. In the set of 37 takes in which an incomplete set of
CE 1 AEs occurred, there were 6 takes in which the ground truth data yielded by NPSim failed to
recognize the occurrence of AE 1.1.b., in which a formation of reconnaissance vehicles take position on
both sides of a bridge, obstructing the road at a distance of >100m from the ends of the bridge, so that
POL traffic is blocked from entering the bridge. There was only one false alarm at the CE level: 1/37
(2.7%).

Complete CE2 Takes N = 41. Out of a corpus of 41 instances of execution of all AEs underlying CE2,
bridge crossing, we achieved event detection accuracy of 92.6%. There were three instances of failure
to detect AE 2.1c, movement of the tank column toward the bridge.

Complete CE3 Takes N = 52. Out of a corpus of 52 instances of execution of the 3 AEs underlying CE 3,
defensive formation, we have completed event detection accuracy of 94.3%. There were three
instances in which AE 3.1, reconnaissance vehicles take up positions on outbound roads away from the
tank column, was not recognized due to proximity of POL entities to reconnaissance vehicles, the
positions of those reconnaissance vehicles relative to each other once they took up their observation
posts.

No atomic or complex events Takes N = 49. There were zero false alarms on these takes.

Complete CE 1 Takes with Domain Shift: Alternative T-72 Tank N = 54. We generated a corpus of 54
instances of CE 1 execution by a group of tanks whose external coloring was a different camouflage
pattern than the grey scheme upon which the YOLOV5 object detector was trained. Of these 54, we
achieved event detection accuracy of 83.3% The missed AEs were nine instances of 1.1.c, which
involves reconnaissance vehicles on the far side of the bridge leaving their posts after blocking traffic
to rejoin the red entity tank column. In five of those nine instances, the OD failed to recognize the
reconnaissance vehicles when they took flanking positions on opposite sides of the bridge to block POL
traffic.

Complete CE 1 Takes with Domain Shift: Wildfire Smoke N = 27. We generated a corpus of 27 instances
of CE 1 execution while a fixed position wildfire generated smoke of limited opacity with wind pattern
shifts cycling every 30 seconds, partially obscuring the sensor window’s exposure to targeted entities,
and impacting the object detector’s ability to recognize the targeted entities. As was the case in the
first domain shift example presented above, performance suffered most at detection of the two AEs
involving reconnaissance vehicles taking position on opposite sides of the bridge to block traffic (1.1.b)
and at detection of the pair of reconnaissance vehicles on the far side of the bridge departing their
post to rejoin the tank column (AE 1.1.c). Failure to detect this AE 1.1.c. departure coincided with the 6
failed instances of detection of the reconnaissance vehicles taking position on opposite sides of the

DISTRIBUTION A: Approved for public release. Distribution is unlimited.
18



UNCLASSIFIED

bridge per AE 1.1.b, for a total of 9 missed observations out of 27, or a completed event detection
accuracy of 66.67% for the wildfire-introduced domain shift.

In summary, results suggested that the re-engineered neurosymbolic pipeline augmented with
expanded event processing language was an effective mechanism for detection of atomic and complex
events in simulated military domain operations data. Recognition threshold targets were met for all
CEs in the original operational environment, and false alarm rates were at or below acceptable
thresholds. In the two separate instances of perceptual domain shift evaluated, recognition threshold
results were mixed, with targeted recognition above 80% achieved in the alternative tank domain, but
recognition at 67% in the domain shift instance involving a stationary wildfire occasionally obscuring
line of sight between sensors and targeted entities.

DISCUSSION

Derivation of meaningful capability in this domain depends on several critical enablers. Developers
must be equipped to define military domain problems according to a hierarchy of complexity,
consistent with a workable entity and event taxonomy. Work with experts under this effort provided
insight into the optimal level of detail and mechanism to capture from subject matter experts,
including the potential utility of capturing SME input using a combination of statements and a
graphical user interface.

It is critical to have an extensible architecture for generation of new scenario data featuring greater
control and modification of terrain and structure elements, entity type and entity count, and a richer
library of entity behavioral controls and goals. Mechanisms and alternatives for the generation and
validation of ground truth data at the entity and event level were also researched.

Generation of a specification language for capturing entity and unit behaviors and characteristics,
defining events, and capturing SME input is immensely useful. This extended to mechanisms for
working with multiple sensors, incorporating spatial abstraction, and description of temporal patterns.
Mechanisms for object detection and tracking were also devised and improved.

Finally, generalizability and deployability of such a solution depends heavily on understanding the
appropriate and needed differences between baseline and domain-shifted data via testing and
iteration. Understanding what to change and to what degree in order to model a perceptual or
behavioral domain shift is critically valuable knowledge. This insight is important for ensuring that an
appropriate reduction in baseline entity/event perception relative to an “unshifted” scenario modeled
in the original operational environment is defined, in order to present a meaningful challenge to the
CEP tool.

CONCLUSION

The NeuroPlex++ effort achieved virtually all its performance targets. More importantly, the work
performed and innovations generated represent a highly promising avenue for further innovation. The
team was able to generate insightful, relevant, and organized red entity scenarios and associated
behaviors, defined in the bounds of a usable object and event taxonomy traceable up to TTP content.
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The Unity-based NPSim tool is capable of generating high-count variable iterations of combined urban
scenarios featuring plausible, variable goal-oriented behaviors by background and red entities,
including constraints on how entities interact with each other. The system also automatically captures
ground truth for event occurrence and entity position frame-by-frame.

The existing NeuroPlex tool was improved to accommodate viewing multiple objects per sensor
sample, incorporate object locations, multiple sensors, and spatial abstractions, and to allow
declarative expression of temporal patterns. The inclusion of an object detector and object tracker in
NeuroPlex++ allowed the tool to expand beyond its previous limits of classification, and a mechanism
for the introduction of perceptual domain shift.

Finally, the team developed a mechanism for the OD-based recognition that a domain shift has taken
place, which will serve as a critical enabler of future innovations. These include further maturation of
the NPSim environment and capability, enhancements to the NeuroPlex++ system itself by direct
incorporation of transformer models for neurosymbolic recognition of AEs, and improved self-training
and neurally reconstructed logic [Manhaeve18]. The plan also calls for adoption of one of a series of
promising OD uncertainty estimations to be used as the basis for determining when domain shift has
occurred, necessitating SME updates, will expand the neurosymbolic CEP grammar, and deliver a UX
by which SME expertise will be more readily captured and catalogued.

AVAILABILITY OF DATA FOR RESEARCH PURPOSES:

Interested researchers are advised that the data files and YOLOv5 model trained for this effort are
available for download by interested researchers. Visit the following address to initiate a request for
access to the data: https://github.com/nesl/ComplexEventDatasets
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APPENDIX A: COMPLETE LIST OF ATOMIC AND COMPLEX EVENTS

CE1: Complex Event 1 “Prepare to Destroy a Bridge” is concluded to have occurred when all the
following AEs are satisfied. Occurrence of all these AEs takes place over a period of 5-10 minutes and
involves detection of objects monitored by 3 different sensors.

« 1.1.z. Aformation of reconnaissance vehicles moves through a sensor area toward a bridge

« 1.1.a. Aformation of reconnaissance vehicles approach a bridge in the same sensor area

« 1.1.b. Aformation of reconnaissance vehicles take position on both sides of a bridge,
obstructing the road at a distance of >100m from the ends of the bridge, so that POL traffic is
blocked from entering the bridge.

¢ 1.1.c. The formation on the far side of the bridge from the tank column moves away from the
bridge

The event as modeled for present purposes does not include the actual demolition of the bridge, only
the performance of all the AEs that serve as prelude to the TTP in which the bridge would be
demolished by detonation.

CE2: Complex Event 2 “Move a Column of Tanks Across a Bridge” is concluded to have occurred when
all the following AEs are satisfied. Occurrence of all these AEs takes place over a period of 5-10
minutes and involves detection of objects monitored by 3 different sensors.

« 2.1.z Aformation of reconnaissance vehicles moves through a sensor area toward a bridge

+ 2.l1.a. Aformation of reconnaissance vehicles approach a bridge in the same sensor area

+ 2.1.b. A formation of reconnaissance vehicles take position on both sides of a bridge, taking
position off the road, close to the ends of the bridge (within 100m of its ends)

¢ 2.1.c. The tank column is detected moving toward the bridge.

This combination of AEs serve as an indication that the column of tanks intends to cross the bridge.

CE3: Complex Event 3 “Enemy forces attempt to set up a stationary defensive position” is concluded to
have occurred when all the following 3 AEs are satisfied.

« 3.0.a. Aformation of tank and reconnaissance vehicles enters a sensor camera box with
reconnaissance vehicles >10 seconds ahead of the tank column.

« 3.1. The reconnaissance vehicle formation divides into groups moving away from the tank
column by all available roads, taking up position between the tank column and any oncoming
traffic

* 3.2 The tank column leaves the road and takes a defensive position off-road in a line or an arc
with all tanks <10m from each other pointing turrets in the same direction.

This combination of AEs serve as an indication that the column of tanks is preparing a defensive
stationary position.

When all AEs underlying a given CE have occurred, that CE is triggered, indicating that the NeuroPlex-
enabled system should warn the hypothetical analyst in our use case of enemy intentions or actions to
be relayed to higher authority.
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APPENDIX B: SCENARIO VISUALIZATION EXAMPLES

Recall that the Phase | scenarios were about making recognitions
about red forces moving armor/tank columns in and around contested
bridges. The phase | use case simulated a defense by blue forces of a
series of bridges in the Ann Arbor M|l metropolitan area. The original
scenario included the decisions regarding blue force deployment in g
response to predictions of enemy intentions when moving through three \ it
different named areas of interest (NAI). A limited subset of this scenario |
was implemented as the Phase | AE/CE recognition challenge, using three | 2
simulated fixed position aerial surveillance assets described below in
Figure 5 (repeated).

Figure 5. Fixed sensor positions

As depicted in Figure 8, Sensor 1 was modeled as two concentric
sensor viewing boxes directly north of Highway 23 of dimensions 500m
x 280m and 350m x 100m. Sensor 2 (see Figure 9) was modeled using
the same structure at a position 2000m north of the Enborne River, and
Sensor 3 (Figure 10) was modeled as a viewing area of the same size, with
watchboxes defined on the north and south sides of the river used to
monitor for reconnaissance vehicles in advance positions.

Figure 10. Sensor Viewing Area 3
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We defined three different CEs involving movement of a column of tanks and recce vehicles through
Ann Arbor toward a bridge (see Appendix A). In all CEs, the column consisted of 4-6 tanks moving in
two staggered columns with targeted separation of 20m between the nearest neighbor when in
formation. The column was escorted by a set of 4 reconnaissance vehicles that moved in pairs, with
targeted separation from the tank column of two minutes, and a targeted distance between the two
pairs of reconnaissance vehicles of 50m during travel. All roads were also populated by a randomly
distributed set of 400-500 civilian vehicles.

C?rﬁera"l -4 v ‘ Camera 2 — 7:31 — CIV Vehicles

Figure 13. Views of civilian vehicles from two sensors.
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