
UNMANNED SYSTEMS PAPER

Unmanned Vehicle Controller Design, Evaluation

and Implementation: From MATLAB

to Printed Circuit Board

Daniel Ernst & Kimon Valavanis & Richard Garcia & Jeff Craighead

Received: 25 May 2006 /Accepted: 10 January 2007 /

Published online: 8 March 2007
Springer Science + Business Media B.V. 2007

Abstract A detailed step-by-step approach is presented to optimize, standardize, and automate

the process of unmanned vehicle controller design, evaluation, validation and verification,

followed by actual hardware controller implementation on the vehicle. The proposed approach

follows the standard practice to utilize MATLAB/SIMULINK and related toolboxes as the

design framework. Controller design in MATLAB/SIMULINK is followed by automatic

conversion from MATLAB to code generation and optimization for particular types of

processors using Real-Time Workshop, and C to Assembly language conversion to produce

assembly code for a target microcontroller. Considering Unmanned Aerial Vehicles, fixed or

rotary wing ones, X-Plane is used to verify, validate and optimize controllers before actual

testing on an unmanned vehicle and actual implementation on a chip and printed circuit

board. Sample designs demonstrate the applicability of the proposed method.

Keywords Autopilot . Controller design . Implementation . MATLAB/SIMULINK .

Microcontroller . Unmanned systems . Validation

1 Introduction

This research has been motivated by the challenge to optimize, standardize, and automate

as much as possible the process of unmanned vehicle controller design, evaluation,

J Intell Robot Syst (2007) 49:85–108

DOI 10.1007/s10846-007-9130-4

D. Ernst (*) :K. Valavanis : R. Garcia : J. Craighead

Department of Computer Science and Engineering, Unmanned Systems Laboratory,

University of South Florida, Tampa, FL 33620, USA

e-mail: deernst@cse.usf.edu

K. Valavanis

e-mail: kvalavan@cse.usf.edu

R. Garcia

e-mail: rdgarcia@cse.usf.edu

J. Craighead

e-mail: craighea@eng.usf.edu

validation and verification, followed by actual hardware controller implementation on the

vehicle. The presented approach is kept as general and generic as possible, so it is

applicable to any unmanned vehicle with minor modifications that depend on the specific

microcontroller processor and autopilot chip used. However, this paper focuses on and

considers as a testbed, miniature unmanned vertical take off and landing (VTOL) vehicles

with very strict payload limitations and power supply restrictions using off the shelf

components.

The rationale behind the attempt to ‘automate’ controller design, evaluation, validation

and verification is manyfold; it stems from the central objective to utilize the plug in–plug-

out concept of mission specific controllers. As such, given that unmanned vehicles in

general, and unmanned helicopters in particular, are used for a multitude of applications

requiring different controllers and mission profiles, rather than hard coding everything a-

priori, it is deemed better to use application specific (low level) and (overall) mission

controllers. This becomes more important given that, depending on a specific mission,

flight patterns may change following non-aggressive or aggressive modes of operation that

dictate different vehicle models (linear, linearized, nonlinear and approximations to

linearization). For example, for non-aggressive flights, it is customary to follow a ‘small

angle approximation’ that results in all sine and cosine functions being 0 and 1,

respectively. Further, controllers are designed using mostly MATLAB/SIMULINK and then

implemented separately in code. But when designing controllers in a programming

language, changes are often tedious, so deriving a working controller requires not only

considerable time, but it is also difficult to modify. In short, there is not a method that

introduces a series of concrete steps to convert a controller (such as a PID, PD, Fuzzy Logic

or an LQR) from MATLAB to implementation on a microcontroller chip. This paper

presents such a method.

The proposed approach follows the standard practice to utilize MATLAB/SIMULINK and

related toolboxes as the design framework. It also takes advantage of the fact that MATLAB/

SIMULINK provides a GUI interface with SIMULINK offering excellent testing

capabilities. Controller design in MATLAB/SIMULINK is followed by automatic conversion

from MATLAB to code generation and optimization for particular types of processors using

Real-Time Workshop. This is then followed by a C to Assembly conversion to produce

assembly code for a target microcontroller. MATLAB/SIMULINK controllers and C code

produced by Real-Time Workshop, are verified, validated and optimized first using a flight

simulator, X-Plane, before actual testing on an unmanned aerial vehicle and actual

implementation on a chip and printed circuit board. X-Plane, a commercially available

package, is chosen because of its extremely accurate flight models, external communica-

tion, airfoil design [6], also allowing for input/output from external sources. While X-Plane

provides UAV testing capabilities to ensure accuracy before implementation for safety

purposes, the conversion process will work virtually on any platform. Future versions of X-

Plane will incorporate integration of accurate ground vehicle simulation with aerial vehicle

simulation so that UGVs may be tested as well.

To ensure wide applicability as well as utilization by individuals with limited or no

background in programming controllers, conversion steps have been kept as straightforward

and automated as possible.

The rest of the paper is organized as follows: The next Section presents system

fundamentals and the overall design process. Subsequent sections describe individual steps

of the design process followed by examples that are provided in a separate section as a

‘walk through’ guide for each step of the process. The last section concludes the paper.

86 J Intell Robot Syst (2007) 49:85–108

2 The Design Process

In the most general case, the starting point of the design process under consideration is

selections of hardware components before controllers are designed using MATLAB. As such,

appropriate sensors (GPS – DGPS, IMU, compass, cameras, lasers, etc.), on-board computers

and processors, microcontrollers and other peripherals are chosen considering processing

capabilities, size and cost, payload and power restrictions. It is also imperative that chosen

hardware components have a solid support base including a compiler to convert C code to

assembly language. This assembly compiler must be able to compile the structures produced

by the Real-Time WorkshopEmbedded Coder toolbox. Generally, a multi-pass compiler is

needed to interpret these structures. Assuming completion of this initial step, Fig. 1 presents a

block diagram of the proposed method and all separate steps involved.

Observing Fig. 1, controllers are first designed using MATLAB; they are tested using

SIMULINK and they are initially validated and verified using X-plane. The process is

repeated and controllers are refined. Once this step is complete, conversion to C code using

Fig. 1 Block diagram of the automated process

J Intell Robot Syst (2007) 49:85–108 87

the MATLABReal-Time Workshop follows. The generated C code is for a target

microcontroller or DSP chip. Additional validation and verification using X-plane follows,

until the generated C code satisfies set requirements. The next step is C to Assembly

conversion before the controller is implemented on the vehicle.

Figure 1, and in particular the validation/verification block illustrates alternative

operational steps in which X-Plane may be used to check controllers twice, once (for

controller validation after the initial design), or never assuming ‘perfect initial controller

design.’ In any case, the importance of controller verification and validation needs no

further explanation.

Fig. 2 Real-time workshop setup

88 J Intell Robot Syst (2007) 49:85–108

3 MATLAB/SIMULINK to C Conversion

To convert from MATLAB to C code, an environment called Real-Time Workshop (RTW)

provides automatic code generation. In addition, RTW also provides several ways to

optimize controllers for particular types of processors. Once a set of controllers is opened in

SIMULINK, the file must be “built” using RTW. Before building, however, several

customizations must be made. First, RTW is selected under the Configuration menu. Next,

the Solver option in the left box is chosen, and under Solver options, the Type box must be

changed to Fixed-Step for an embedded target. Because controllers are implemented on a

microcontroller chip, the proper .tlc file needs be selected – information for proper selection

can be determined from the designer’s reference [2]. In the RTW system target value, type

ert.tlc, which causes RTW to produce code targeted for embedded systems. Once this

filename has been entered, the options under Build process should change. However, if they

don’t, Template makefile option is changed to ert_default_tmf. The makefile option allows

for further customization such as conversion for microcontroller enabled floating point or

integer operations (Fig. 2). For example, PID controllers contain floating point operations,

but the main microcontroller does not have floating point capabilities, so the default

makefile is selected. If the controllers designed in MATLAB/SIMULINK are created utilizing

hardware not present in the particular microcontroller, errors will occur when trying to

generate the C code for that particular controller. When converting controllers with floating

point operations for a microcontroller that does not contain a floating point unit, the fixed

point tlc file can not be chosen.

Next, the Configuration menu must be opened and hardware implementation must be

selected. The pull-down menu next to Device type contains optimizations for various processors

and microcontrollers (Fig. 3). Once this has been selected, RTW is selected again from the

Fig. 3 Microcontroller selection

J Intell Robot Syst (2007) 49:85–108 89

Fig. 4 Overall real-time workshop conversion

Fig. 5 Files needed for conversion

90 J Intell Robot Syst (2007) 49:85–108

selection menu and the Build button is pressed to start building the C files. The only major

difference between how the controllers are implemented occurs in the base step: the conversion

from RTW to C. Figure 4 shows a more detailed diagram of the RTW conversion to C code.

4 Assembly Code Generation

Once files are built, a target compiler is opened to import the files. RTW produces different

files attempting to tie the C files to MATLAB; these files must be imported into the target

compiler for proper handling. An illustration is shown in Fig. 5; files imported from RTW

output directory to a compiler for conversion to assembly code. In addition, there exist data

structures that must be interpreted through the tmwtypes.h and rtwtypes.h files (see Fig. 5).

While these files are needed by the compiler, RTW does not output them to the same

directory as the rest of the files. Thus, these files must be located in the MATLAB directory,

copied into the RTW output directory, and then imported into the compiler; Fig. 6 shows the

flow control conversion.

Modifications must be made to the C files to ensure proper implementation on the

microcontroller chip. This is an involved procedure that starts with a detailed schematic of

Fig. 6 Assembly code generation

J Intell Robot Syst (2007) 49:85–108 91

the unmanned vehicle autopilot board that is used. The autopilot schematic includes all pins

vehicle sensors are connected to. Once these pins are determined, they are assigned to the

variable names on the microcontroller chip. In addition to providing pin assignments, sensor

outputs need be converted to the proper format to be handled by the microcontrollers. Timing

issues should be dealt with – if this is not handled within theMATLAB/SIMULINK controller

design – as well as any alterations to sampling times. Rather than programming the pin

assignments, initialization, and timing requirements each time the controller is modified, a

separate C file should be created that makes all of these initializations. Thus, this separate C

file will be the main C file and several function calls will reference the functions produced

in the C code generated from Real-Time Workshop. More compact code may be generated

through coding the main C file in the compiler native language (usually the syntax is

provided in the compiler manual) [1]. Before converting the controllers to assembly code,

they should be tested again (once in SIMULINK and once with the C code) with some type

of simulation to ensure proper operation. This is especially true when the controllers are

implemented on aerial vehicles and safety is extremely important. Once any needed

conversions and testing are complete, the assembly files can be generated and the target

chip programmed via the method specified by the chip manufacturer.

This step concludes the controller conversion process, but since these controllers are

targeted for unmanned vehicles, they should be verified, validated, tested and refined before

actual implementation. This is accomplished using the X-Plane simulator.

Fig. 7 The raptor 90 model

92 J Intell Robot Syst (2007) 49:85–108

5 X-Plane Based Controller Simulation

5.1 X-Plane in General

Concentrating in aerial vehicles, X-Plane is a closed source, commercially available

package used to verify/validate/refine controllers designed in MATLAB and ensure proper

conversion from MATLAB to C code (Fig. 1).

Although there exist several simulators like Microsoft’s Flight Simulator, and

FlightGear, X-Plane provides extremely accurate flight models and allows for external

communication as well as airfoil design [6]. It is accurate enough to be used to train pilots

[5]. Unlike Microsoft Flight Simulator, however, X-Plane also allows for input and output

from external sources. While FlightGear has I/O capabilities similar to X-Plane, it is not

quite as stable as X-Plane and doesn’t provide the level of support. As noted in [3], X-Plane

provides future capabilities that unmanned aerial vehicles will need, including navigation

markers, changing weather conditions, and air traffic control communication. Figures 7, 8,

9, 10 show a Raptor 90 SE modified from a Raptor 70, obtained from air.c47.net, and a

YAMAHA R-max model created using the X-Plane plane maker. While X-Plane’s plane

maker provides an interface to design a vehicle based on physical dimensions, power,

weight, and a host of other specifications, it produces a specialized file that allows the

simulator’s built in physics to properly interact with the model. Thus, the equations for the

simulator model are not available.

Fig. 8 Raptor 90-hovering

J Intell Robot Syst (2007) 49:85–108 93

A key aspect of controller verification/validation/refinement is the actual communication

and interface between the X-Plane and MATLAB/ SIMULINK. This is presented in the next

subsections, based on the detailed diagram shown in Fig. 11 for sample controllers. The

remainder of this section describes a fuzzy logic controller, designed by Richard Garcia,

used to test the X-Plane communication. In Section 5.2 we will describe the UDP protocol

used to communicate with X-plane and how this was incorporated into our MATLAB

controller. Section 5.3 describes how the I/O is processed within the controller to facilitate

communication between SIMULINK & X-plane. Section 5.4 describes the experimental

setup within X-plane and the goals of the simulation. Finally Section 5.5 presents the results

of the simulation, verifying proper operation of the controller.

Currently, there are several fuzzy logic controllers for small VTOL vehicles that are

integrated with a SIMULINK/X-Plane communication block allowing for testing of a

Raptor 90 model. This integration of the fuzzy logic controllers with the SIMULINK/X-

Plane communication block can be seen in Fig. 12. Currently, the controllers allow for

hovering of the Raptor 90 as well as for navigation via waypoints, both under normal flight

and under tail rotor failures. The fuzzy logic controllers designed in MATLAB using the

fuzzy logic toolbox consist of separate fuzzy blocks for aileron, elevator, collective, and

rudder inputs to the Raptor 90 model. The controllers utilize the vehicle’s current

information such as latitude, longitude, velocities, and angular rates information from X-

Plane to calculate movement and correct error. By combining error with the vehicle’s

current attitude and angular rates, the controllers can directly connect the error to a

particular actuator movement.

Fig. 9 Raptor 90 in slow forward flight

94 J Intell Robot Syst (2007) 49:85–108

5.2 X-Plane UDP Communication

X-Plane uses UDP communication to send and receive data packets; this allows for changes

to be made to various values within X-Plane. The UDP protocol has advantages and

disadvantages. UDP may be unreliable over any distance due to its protocol, which does not

guarantee receipt of any sent packet; on the other hand, UDP is extremely fast and utilizes

bandwidth more efficiently [7].

X-Plane is able to dump up to 99.9 data packets per second across a local network; this

has an important impact on controller functionality (and simulation) because they require

sufficient update speed to operate correctly. X-Plane offers several parameters whose values

may change, including control of the aircraft, failure introduction, etc. For the fuzzy logic

controllers, a rate of 50 Hz was chosen because it realistically reflects the message rates of

the Microstrain 3DM-GX1 IMU currently on board the actual Raptor 90 helicopter.

In order to select the appropriate data items to export to SIMULINK, X-Plane provides

an easy to use checkbox interface as shown in Fig. 13. However, X-Plane is not open-

source, hence, it will be necessary to be familiar with the UDP documentation [4].

5.3 X-Plane Exported UDP Data

X-Plane may send and receive a large number of parameters allowing controllers to be

designed using many different sensor readings. When the Inet2 tab is opened, the IP

computer address that includes the controllers is ‘written’ along with the corresponding

(proper) ports as shown in Fig. 14. Next, the Data Set tab is chosen and values required by

Fig. 10 Yamaha R-max, designed by Jeff Craighead, awaiting take-off

J Intell Robot Syst (2007) 49:85–108 95

the controllers are selected. X-Plane starts sending the data to the destination IP and port. In

addition, X-Plane waits to receive packets on another specified IP and port. The speed with

which data is exported is controlled by increasing or decreasing the number of data packets

per second (a range from 0 to 99.9) in the Data Tab. To send the data, a UDP packets are

formed consisting of the string of characters “DATA” followed by an integer; then, the data

items selected on the screen are attached in increasing order of the data item numbers. Each

data item consists of one integer (the number specified in the output screen) and eight float

values. The proper index value (begins with 0) for a selected data item may be determined

Fig. 11 X-Plane/SIMULINK communication and interface

96 J Intell Robot Syst (2007) 49:85–108

by displaying the selected values on the screen-selecting one of the four checkboxes in the

data output dialog box. For each item, the data structure looks as follows:

{

int=item number

float[8]=values within the item

}

Once, all the data value selections have been assembled into the packet, the packet is

sent to the destination IP and port in network byte order as shown in Fig. 15. Notice that

after the header information, each item selected to be output from X-Plane contains

36 bytes. Thus for the fuzzy logic controllers, 13 data items are sent from X-Plane to the

fuzzy logic controllers, so 416 bytes (36 * 13) plus the five packet header bytes (a total of

421 bytes) are sent inside each UDP packet at a rate of 50 Hz.

5.4 C Code Interpretation

Since X-Plane runs on a Windows XP machine in the lab, Winsock is utilized in the C code

to set up the client/server socket communication. X-Plane is considered to be the server

Fig. 12 SIMULINK/X-Plane communication block integration

J Intell Robot Syst (2007) 49:85–108 97

Fig. 14 X-Plane IP and socket interface selection

Fig. 13 The X-Plane communication screen

98 J Intell Robot Syst (2007) 49:85–108

while the machine containing the controllers is the client. Thus, socket communication is

first implemented in the C code to enable and allow communication. Next, the client waits

to receive the output from the server, and once the client receives a packet its data is placed

in a buffer. The client has an X-Plane packet stored, but the data can not be used because it

is in network byte order. To overcome this problem, the bytes of each data value are

swapped and the readable values are stored in a two dimensional array for easy access.

Next, a second two-dimensional array is created to mirror the first, and any data alterations

are made in this array. As controllers generate new values for the simulator, variables inside

the code receive the data and change the values in the second two-dimensional array; the

original data is not modified. Updated values are now ready to be sent to X-Plane, so the

new packet is assembled with a header of “DATA,” and the two dimensional array is

transformed into a one-dimensional array. However, before sending the data, each byte

must be converted to network byte order by again swapping the individual bytes inside each

data value.

Additional functions may be created to handle conversion of values from X-Plane to a

format accepted by the controllers. For example, each helicopter in X-Plane has a different

collective range, so a global declaration may be necessary along with a normalization

function. Thus, when a new helicopter is tested, only the global value is changed.

Fig. 16 The SIMULINK library

browser

Fig. 15 Example packet sent

from X-Plane

J Intell Robot Syst (2007) 49:85–108 99

The S-Function builder is used to implement the C code into a SIMULINK block for

interaction with the controllers. The S-Function builder is included in SIMULINK and it is

found in the User-Defined Functions category of the Library Pane (see Fig. 16). Several

items must be added inside this block. Since socket communication through Winsock is

used, the appropriate library must be included in the Library Box under the Libraries Tab.

Additionally, any header or C files must also be included in the Includes box as shown in

Fig. 17. Any extra functions used by the main function must be included in this pane

because SIMULINK will look at these files for any function calls. The I/O ports are then

created in the Data Properties tab (straight forward, it varies depending on the controller

built). The Sample mode is set to ‘inherited’ in the initialization tab to allow the block to

sample as quickly as the information is received from X-Plane. Figure 18 shows the I/O

ports and sampling mode.

The main C function is implemented into the S-Function block. Updates in SIMULINK

occur at each time step, thus, any infinite loops must be eliminated or the block will run

continuously and the time step within SIMULINK will never be updated. The main()

function encapsulation is removed because SIMULINK does not recognize functions within

the Outputs tab. The code is entered in the Outputs tab dialog box consisting only of those

items shown in Fig. 19. Once the code is entered, an interface between the SIMULINK I/O

ports and the internal C Code variables is created. It is important to note that SIMULINK

usually does not run in real time, but because SIMULINK is forced to run in real-time

because it updates with X-Plane, which runs in real-time.

5.5 X-Plane Extra Features

X-Plane has been chosen because of its many features. For example, Fig. 20 illustrates

various forces acting on the different control surfaces of a helicopter – the green lines show

a 22 knot wind (maximum wind speed to be able to fly the Raptor 90 model safely). For

flight failures, X-Plane offers the ability to fail GPS, control surfaces such as left roll, right

Fig. 17 The S-Function block libraries tab

100 J Intell Robot Syst (2007) 49:85–108

roll, pitch up, pitch down, yaw left, yaw right, roll trim, pitch trim, yaw trim, control

throttle jam minimum, maximum, and current, engine failure, engine fire, and engine

mixture. To test the fuzzy logic controllers, tail failures were implemented by using the

failure panel. In addition, the flight path feature was utilized to determine the vehicle path

when in autopilot mode to analyze tightness of the controller for holding a particular

position (Fig. 21). X-plane has the ability to communicate with multiple aircraft; swarms

may be simulated to see how vehicles interact with each other. A host of other features is

available and may be viewed in UDP documentation [4]. In addition, future versions of X-

Plane will incorporate wheel/ground interaction to allow simulation of ground vehicles.

6 Implementation Issues and Examples

As sample implementations, conversion of controllers designed for miniature unmanned

helicopters (RAPTOR series) with very strict and limited payload, power, and processing

capabilities is presented. Controllers designed are PID, Fuzzy Logic and LQR [8–10].

Figure 22 shows a system overview of the involved steps.

Fig. 18 The S-Function block data properties and initialization tabs

J Intell Robot Syst (2007) 49:85–108 101

It is known that PID controllers are self contained in one SIMULINK model file, while

Fuzzy Logic controllers contain a SIMULINK model file and three fuzzy inference system

files. LQR controllers are implemented in a SIMULINK model file with several MATLAB

script files. It is stated that while PID controllers present no problem in conversions, more

complex designs such as Fuzzy Logic or implementation of MATLAB script files require

extra time in getting them to work properly together. Figures 23, 24, 25 show the steps

necessary to convert the three controller types mentioned above.

The hardware configuration chosen for implementation includes an autopilot printed

circuit board (PCB) with three different microcontrollers manufactured by Microchip. One

microcontroller controls inputs and outputs to servos and provides a safety by allowing

control of the helicopter to be switched between the autopilot board and the transmitter. A

second microcontroller interfaces with the GPS module on the PCB, and the third

microcontroller interfaces with the IMU, GPS, and barometric pressure sensor. Microchip

produces a wide variety of microcontrollers and microcontroller tools; in this case a PIC-C

compiler generates the assembly code [1]. Once the controllers were designed, each

controller was tested within SIMULINK to determine correct operation for the target vehicle

platform.

Fig. 19 Items included in the c

code under the outputs tab

102 J Intell Robot Syst (2007) 49:85–108

Fig. 21 Raptor 90 hovering with fuzzy logic controller in 11 knot wind

Fig. 20 Forces acting on the raptor 90 control surfaces

J Intell Robot Syst (2007) 49:85–108 103

During the conversion from MATLAB to C, procedures are straightforward as presented

in Section 3, except that no Microchip microcontrollers existed in the target list; so the 8-bit

generic processor was selected (see Fig. 3).

The steps outlined in Section 4 for assembly code generation were followed using the

CCS PIC C Compiler targeted for Microchip PIC 18XXX microcontrollers. This allowed for

easy generation of the assembly language for specific types of microcontrollers without

tediously programming necessary changes in Assembly. Before the assembly code is

generated, pins are assigned to the variables as shown in Fig. 26 and all necessary

conversion functions are implemented. The assembly code is then generated and

implemented on the PIC 18F4620.

Concentrating in the RAPTOR 90 helicopter and PID controller design, the X-Plane

UDP block is placed in SIMULINK with the PID controllers as shown in Fig. 27. A model

Fig. 23 PID controllers

Fig. 22 Detailed steps

104 J Intell Robot Syst (2007) 49:85–108

was created and tested with the controllers until it performed non-aggressive flight

scenarios as expected.

In general, controller inputs and outputs may change depending on the controller type

and what it is used for. In the C code, all necessary variables are listed at the top [2]. Thus,

the code can be easily changed to accommodate changes to the controllers.

Controllers utilize radians rather than degrees; controllers output a collective value

between −1 and 1 while X-Plane accepts a value between 0 and 16 (depending on the

helicopter); hence, special functions are created in a separate C file to normalize the

collective input to X-Plane and convert degrees to radians. A global variable was also

created for the collective to allow easy switching between types of helicopters.

In addition to implementing UDP communication between SIMULINK and X-Plane in

C, a Java interface was created allowing for portability between systems.

Fig. 25 LQR controllers

Fig. 24 Fuzzy logic controllers

J Intell Robot Syst (2007) 49:85–108 105

7 Discussion and Conclusions

This paper aimed at providing e a standardized method for controller implementation from

SIMULINK onto a PCB. As such, it presented a step-by-step approach to covert the

SIMULINK-based controller block set to C code, and then convert the C code to assembly

language for implementation. While this approach is critical because of lack of support for

some types of microcontrollers, FPGAs, and DSPs within SIMULINK’s Real-Time

Workshop, some specific chip types are pre-built into RTW, so this step-by-step process

may not yield the optimal method for code conversion if the target PCB utilizes one of

these built-in chip types. Current architecture specific code optimizations built into Real-

Time Workshop include: ARM 7/8/9, Infineon TriCore, C16x, and XC16x series, Motorola

32-bit PowerPC, 68332, 68HC11, and HC08, NEC V850, Renasas SH-2, SH-3, and SH-4,

TI C6000 and C2000, STMicroelectronics ST10, and SGI UltraSPARC III.

Although the Microchip PIC18F series of microcontrollers are not listed under code

optimization techniques, conversion of PID controllers for the target application consumed

only 72 KB in the final hexadecimal format. While this is small enough to fit on most

microcontrollers, PID controllers are extremely simple when compared to more complex

Fuzzy Logic and LQR controllers which will produce much more code. Using these higher

level controllers will require more memory and better processing power than what a simple

microcontroller can provide.

Testing controllers with X-Plane from inside SIMULINK has proven to be an extremely

valuable tool both in time and cost. Initial testing showed a flaw in one of the early PID

controllers allowing for redesign before implemented on the actual platform. This saved

time because the actual VTOL did not have to be flown (which requires a substantial

Fig. 26 Exported controller variables

106 J Intell Robot Syst (2007) 49:85–108

amount of time on the part of several individuals) and the actual VTOL did not crash.

Current testing with Fuzzy Logic controllers is allowing for easy tuning of the rules without

having to test on board the vehicle (another valuable time saver). Once the rules are

properly configured, noise will be added to simulate the noise data collected from the

sensors located on the VTOL. As a result the controllers will implemented on an very

accurate simulated flight model before being implemented on the actual model to provide

the smoothest transition possible.

Actual testing using X-Plane and a PID controller has shown success and the PID

controllers are under revision to allow for IMU drift (which caused instability in the model).

For portability between systems both C code and Java X-Plane communication

implementations have been developed. Future work will include testing of newer Raptor

90 PID controllers as well as implementation of these controllers on the same autopilot

board used for the small UGV platform. In addition, to ease implementation of the X-Plane

block diagram within SIMULINK, the block will be reworked to allow changing of the

Fig. 27 Actual PID implementation in SIMULINK

J Intell Robot Syst (2007) 49:85–108 107

imported data items within SIMULINK rather than within the code. In addition, interactions

between landing a small VTOL on an ATRV Jr. have been tested through X-Plane and

several of the plug-ins associated with the simulator. While the current version of the X-

Plane/SIMULINK communication is applicable to non-predictive time based controllers, the

SIMULINK solver has problems with maintaining real-time when the X-Plane SIMULINK

block is run with controllers. However, this is not true if the bock is run separately, so the

problem lies with the SIMULINK solver and socket communication. This problem will be

solved in a future version of the X-Plane/SIMULINK communication block through

working with Mathworks and perhaps implementing the block as two separate blocks.

Acknowledgements This research has been partially supported by: an ONR Grant N00014-04-10-487; a

U.S. Navy Coastal Systems Station (now called NSWC-Panama City) Grant N61331-04-8-1707; and a

U.S. DOT through the USF CUTR Grant 2117-1054-02.

References

1. Incorporated, C.C.S.: C Compiler Reference Manual. Brookfield (2005)

2. Fisher, A.E., Eggert, D.W., Ross, S.M.: Applied C: An Introduction and More. McGraw-Hill, New York

(2001)

3. Walker, I.M., et al.: Simulation for the next generation of civilian airspace integrated UAV platforms. In:

Proceedings, AIAA modeling and simulation technologies conference and exhibit. Rhode Island,

(August 2004)

4. Meyer, A.: X-Plane UDP Reference Manual (2005)

5. Kreider, L. http://www.flightmotion.com/docs/faa_approval.htm, FAA Approval Document

6. Fidelity Flight Simulation Homepage, http://www.flightmotion.com

7. Liu, P., Meng, M., Ye, X., Gu, J.: An UDP-based protocol for internet robots. In: Proceedings, 4th World

Congress Intelligent Control and Automation. China, June (2002)

8. Alvis, W., Castillo, C., Castillo-Effen, M.: Small scale helicopter control design. Internal report for the

Center for Robot Assisted Search and Rescue (CRASAR), USF (2004)

9. Castillo-Effen, M., Valavanis, K.P.: Control of miniature rotorcraft: Linear quadratic methods. Internal

report for the Center for Robot Assisted Search and Rescue (CRASAR), USF (2005)

10. Castillo, C., Alvis, W., Castillo-Effen, M., Valavanis, K., Moreno, W.: Small scale helicopter analysis

and controller design for non-aggressive flights. In: Proceedings IEEE International Conference on SMC,

October (2005)

108 J Intell Robot Syst (2007) 49:85–108

http://www.flightmotion.com/docs/faa_approval.htm
http://www.flightmotion.com

	Unmanned Vehicle Controller Design, Evaluation and Implementation: From MATLAB to Printed Circuit Board
	Abstract
	Introduction
	The Design Process
	MATLAB/SIMULINK to C Conversion
	Assembly Code Generation
	X-Plane Based Controller Simulation
	X-Plane in General
	X-Plane UDP Communication
	X-Plane Exported UDP Data
	C Code Interpretation
	X-Plane Extra Features

	Implementation Issues and Examples
	Discussion and Conclusions
	References

