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Abstract—Many autonomous systems today, such as robots,
drones, and actuated networked sensors, have deployed deep
learning models for detecting events from unstructured sen-
sory data. However, the strong performance of these models
is restricted to events with short intervals of time and space
due to the limited context memory of their architectures. Thus,
detecting events that transpire over long periods of time with mul-
tiple spatially distant sensor sources (known as complex events)
remains challenging for these purely neural-based methods,
particularly as environmental conditions and object appearances
change. In recent years, neurosymbolic approaches have been
proposed that use both neural-based perception and symbolic
reasoning for capturing complex events. Yet, these approaches
still inherit the vulnerability of neural models to perceptual
domain shift arising from changing environmental conditions
and object appearances, leading to a reduction in the perfor-
mance of complex event detection. At the same time, standard
domain adaptation mechanisms for neural models do not scale
well to complex events involving spatiotemporal reasoning over
simpler events. We address these problems in the context of a
prototype neurosymbolic system called DANCER, which performs
Domain Adaptation and Neurosymbolic inference in Complex
Event Reasoning. DANCER aims to provide domain adaptation in a
post-deployment setting while minimizing runtime user burden
for annotation. To enable training and evaluation of DANCER, we
also provide a physics-based synthetic sensor data generator to
create videos given complex scenario specifications. We evaluate
DANCER on a dataset of generated synthetic data. We show that
DANCER yields a 48% increase in accuracy of complex event
detection using domain adaptation while significantly reducing
the annotation time of our synthetic complex events by up to
2.7x, demonstrating DANCER’s ability to effectively detect complex
events under perceptual domain shift.

I. INTRODUCTION

Autonomous systems today are equipped with rich sensing
capabilities transmitting high dimensional unstructured data,
and powered by an ever-growing list of AI/ML solutions that
process and analyze such data on-device. In the future, these
systems must be capable of detecting and reacting to various
events of interest occurring in their environment. Typical
applications in autonomous systems involve spatiotemporal
reasoning between events observed by different sensors in
order to coordinate actions by robots, actuated sensors, and
other autonomous systems.

Examples of such applications include urban scenarios such
as detecting street takeovers [1], flash mob robberies [2],
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Fig. 1: We propose a complex event detection system that
adapts to different cases of perceptual domain shift using high-
level complex event labels.

suspicious package placements [3], and coordinated terror-
ism attacks [4]. These scenarios may be captured by traffic
cameras, mobile robots, and drones. Other examples include
military scenarios with aerial drones for surveillance or rescue
missions [5], and detecting complex actions in sporting events
using pan-tilt-zoom cameras [6].

Building the necessary detection pipelines for these au-
tonomous system applications requires reasoning and analysis
over events that are distributed across multiple sensors, and
involve varying spatial and temporal relationships of diverse
objects and the environment. Detecting complex events in
these settings has been historically examined via purely sym-
bolic approaches, such as logic programs [7]-[12] or finite
state machines [13]. However, these approaches do not adapt
well to unstructured data due to the brittleness of logical
rules and human-engineered finite state machines. On the
other hand, while purely neural approaches are capable of
adapting to different types of unstructured data and are well-
suited to capturing simpler events (e.g. object detection from
video), they struggle with reasoning about multisensor data
over longer periods of time. To address this gap, various
neurosymbolic architectures [14]-[18] have been proposed in
recent years. These architectures are capable of reasoning
over complex events from unstructured data. However, as the
appearances of objects and environmental conditions change
over time, both neural and neurosymbolic architectures suffer



from potential perceptual domain shifts (shown in Figure 1),
reducing the performance of complex event detection.! This
necessitates a method of domain adaptation, which fine-tunes
deep learning models to the new perceptual domain. However,
prior methods on domain adaptation for neural models do not
enable learning from high-level complex event labels, while
other adaptation approaches in neurosymbolic methods do not
consider neural models with high dimensional outputs (such
as object detectors).

We introduce DANCER, a system for detecting complex
events over unstructured data while adapting to perceptual
domain shift. These events are commonly found in both urban
and tactical scenarios with multiple objects comprising each
event, spread across multiple non-overlapping cameras with
varied vantage points and fields of view. As cameras are
increasingly being equipped with onboard GPUs [19], [20],
object detection and other functionality can be performed
closer to the source of the events. At the same time, it is
necessary to aggregate information from multiple individual
cameras in order to make sense of complex events that are
distributed in space and time.

We provide 3 contributions. Our first contribution is an
approach for domain adaptation in complex event scenar-
ios that leverages temporal dependencies between events in
a multistage annotation process which iteratively increases
user involvement as necessary. This approach aims to min-
imize user annotation effort post-deployment of the com-
plex event detection system. Our second contribution is a
set of tools for simulating complex events across varying
weather conditions and object appearances while generating
both street-level and aerial video footage. Our third contri-
bution is a language for specifying complex events involv-
ing multiple objects and regions of interest across spatially
distributed cameras. We have publicly released our code at
https://github.com/nesl/DANCER, which includes the associ-
ated software program and interfaces for domain adaptation,
simulation tools, datasets, language, and the complex event
detection system.

II. RELATED WORK

Complex Event Processing Over Structured Data

Several works rely on a SQL-like language in order to match
patterns of structured data, such as RFID readings [7], [8].
These languages involve various operations for filtering based
on simple predicates, aggregating multiple event streams to-
gether, and publishing new types of streams based on previous
operations. We focus on capturing events from unstructured
data (i.e. video), and aim to overcome the lack of spatial
constraints in these languages.

'In addition to perceptual domain shift, symbolic domain shift may also
occur, thus requiring domain adaptation to also update its event reasoning
abilities (shown via the dotted orange line in Figure 1). Though we do not
consider cases of symbolic domain shift in this work, symbolic domain shifts
mainly focus on changes in complex event definitions (e.g. a new variant of
a crime may occur, which involves different objects to be observed).

A variety of spatial temporal logic languages have also
emerged in the past decade. These languages describe a set of
formal rules over systems, which can then be implemented in
a programming language to enforce certain constraints, such
as safety (i.e. rules must never be violated). A number of
spatial logic languages [9]-[12] provide a set of primitives
for both time and space, enabling selection, aggregation, and
ordering of different complex events. While many of these
spatial temporal logic languages introduce interesting spatial
constraints, they do not present systems that are capable of
matching events over unstructured sensory data and thus are
unsuitable for domains involving data such as audio or video.

Complex Event Processing Over Unstructured Data

Several systems combine neural models and symbolic pro-
grams (known as neurosymbolic architectures [14]) to process
complex events from unstructured sensory data [15]-[17],
[21]. All these systems employ a two-stage pipeline where
the first stage utilizes neural modules to process raw sensor
data to obtain primitive events, and the other stage consists of
a symbolic or symbolic-aided reasoner that specifies complex
events based on the patterns of primitive events for detection.
In particular, [17], [21] have proven to work well in the
realm of computer vision. Our work also seeks to perform
complex event detection via a neurosymbolic pipeline while
also supporting domain shift.

There is also a significant body of work on distributed video
analytics for event processing. These works aim to perform
lightweight scalable video processing and neural inference
in distributed settings [22]-[24], with some including query
languages for applying symbolic operators over detected ob-
jects [25], or enable question answering over the video stream
[26]. However, unlike prior work, we address complex events
involving multiple objects and their composition, while also
considering the challenge of domain shift of neural modules
that have high dimensional output (e.g. object detectors).

Distribution Of Tasks Across Devices

Sensor network programming [27]-[31] provides a method
of issuing queries across various sensor networks, where the
number of nodes range from 10s to hundreds. Devices are
tasked with some sensing objective by a command which is
broadcast across all nodes - results of the sensing objective are
then aggregated or routed to an origin query node. However,
these systems still lack the ability to represent more complex
spatial and temporal relations between tasks which are present
in spatial temporal logic languages.

Domain Adaptation Under Perceptual Domain Shift

Unsupervised domain adaptation has been shown to be
possible for object detection models under different perceptual
shifts (e.g. weather, new objects). However, these methods
typically require knowledge about perceptual domain shift
characteristics ahead of time [32]-[34] which may not be
readily available in complex event scenarios. On the other
hand, semi-supervised domain adaptation for object detection



has also been studied [35], [36] which aim to minimize user
annotation effort by introducing additional neural models to
automate parts of the annotation process. However, these
works still rely on users to annotate at the level of an image,
which is burdensome in complex event scenarios involving
multiple video streams over long periods of time. While some
prior neurosymbolic approaches consider perceptual domain
shift [15] via a differentiable symbolic stage, their neural
models focused on classification. In the case of more complex
models with high dimensional output, such as object detec-
tors, it becomes far more difficult to propagate information
about object locations from high-level complex event labels.
Our system provides semi-supervised domain adaptation of
neurosymbolic pipelines with object detectors.

III. BACKGROUND CONCEPTS
Complex Event Hierarchy

When converting unstructured sensor data into high-level
complex events, we consider an event hierarchy that evolves
low-level data into higher order inferences. This hierarchy is
shown in Figure 2. At the lowest level, we generate object
events from raw video frames. Object events are mainly frame-
by-frame object detection results that involve bounding box
information and object class. Object events are then aggregated
over a short time window in order to derive vicinal events.
Vicinal events allow us to determine if a unique object has
entered a particular area, and assigns unique track IDs to
each individual object (thus requiring multiple frames of object
detections).

Note that these vicinal events are not specific to cameras,
but also applicable to other forms of sensing such as LIDAR or
acoustic sensing. Vicinal events are already present in today’s
systems. For example, cameras operating in a home setting
typically already monitor vicinal events, such as Motion Zones
in Amazon Ring [37], or known in the military as watchboxes
[38]. These systems aim to prioritize events of interest, such
as when objects approach one’s front door rather than moving
on a distant street, so false alarms are not generated.

We use vicinal events to generate a set of watchbox states
that monitor spatial regions of interest (an example of a
watchbox is shown in Figure 2 in the bottom right, highlighted
in blue). Watchbox states record multiple vicinal events and
object locations. Afomic events execute over multiple watch-
boxes connected by relational operators and logical operators,
while complex events allow for different temporal constraints,
pattern constraints, and logical relationships between atomic
events. These events are further described in Section IV.

Domain Adaptation

The problem of domain shift or distribution shift [39] is
well known in machine learning, where models trained on one
particular dataset (known as a source dataset) fail to generalize
well to a new dataset (known as a target dataset). For instance,
a detection model trained on a dataset collected in Los Angeles
may not perform as well on images from London, due to
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Fig. 2: Different types of events in our event hierarchy.
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changes in weather, scenery, and object appearances (such as
new vehicle models).

While a simple approach to handling domain shift requires
ground truth annotations of data from the target domain, this
is challenging for two reasons, particularly when considering
complex event settings. The first is the high cost of manual
labor in order to provide annotations. The second is that in
many complex event scenarios, the annotations provided are
too coarse to meaningfully adapt to domain shift. For example,
a complex event label of “pedestrian stealing package” is
far too underspecified to fine-tune an object detector with
annotated objects - there is simply not enough information
about where objects might be located in an image, nor the
relationship between them.

IV. SYSTEM ARCHITECTURE AND METHODS

The design of DANCER is comprised of an edge computing
component, known as the DANCER client and the DANCER
coordinator which involves the simulation of complex events,
detection and reasoning, as well as domain adaptation. Figure
3 shows the high level architecture of DANCER. The DANCER
client executes on a GPU-enabled edge device, such as an
aerial drone or traffic camera. First, the client performs object
detection, which processes each frame of a video, extracts a
bounding box for all objects and classifies each one. We utilize
YOLOVSs [40] to perform both fast and lightweight object
detection capable of running on mobile devices. Once objects
are detected, we assign unique IDs to each object in order
to track them across video frames. We use a state-of-the-art
tracking algorithm known as ByteTrack [41] that also executes
on the client. This algorithm takes in bounding boxes of the
detected objects and uses both a Kalman filter and intersection-
over-union of successive frames to assign unique IDs. Finally,
the unique IDs and object locations are used to determine the
occurrence of vicinal events (objects that enter/exit a region
of interest).

These vicinal events are then transmitted to the DANCER
coordinator, who uses the events to update watchbox states and
perform complex event reasoning. In addition, the coordinator
is capable of simulating complex events that are normally diffi-
cult to capture in reality, as well as fine-tuning object detection
models to perform better under perceptual domain shift. The



next sections describe each of the main functionalities of the
DANCER coordinator.
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Fig. 3: The different processes present in DANCER. It first
takes in multiple different sources of video, produces complex
event inferences, and enables fine-tuning of neural predictors

A. CE Specification and Reasoning

Users may specify different atomic and complex events,
which are defined in Figure 4. Atomic events (AE) involve
multiple watchbox states wbs, a predicate p, with each event
being evaluated at the current time step i. Each watchbox
maintains a history of tracked objects within a region of
interest in a video, with each predicate p targeting a particular
watchbox and reasoning about the composition of objects (e.g.
how many vehicles are present) describing the watchbox state
wbs. Complex events (CE) are built using multiple operators
(op) acting over both atomic events and complex events (evs).

We implement these terms and operators in LanguageCE,
2 where complex events are written and evaluated as Python
programs, enabling both parsing of specifications and com-
plex event reasoning given watchbox states. However, in our
implementation, only the SEQUENCE/SET operators may be
evaluated over both complex and atomic events; the remaining
operators only use atomic events.

Event Types Event value Event Detection time

AE :=<wbs,p >  AE.value(i) = AE.p(wbs,i) Min(i) 5. t. AE. value(i) == True and AE.value(i — 1) == False

CE =<op,evs >  CE.value(i) = CE.op(evs) Min(i) s. t.CE.value() == True and CE. value(i — 1) == False

Operators Result
CE = AND([AE,, .., AE), 1)
CE = OR([AE,, ..., AE],0)
CE = HOLDS(AEy,i, L)
CE = SEQUENCE( [AEy, ..., AE],i)
CE = SET([AE,, ..., AE],i)
CE = SEQ_TIMED([AE,, ..., AE,]i,L)

AE,.value(i) AND AE;.value(i) ...
AE,.value(i) OR AE,.value(i) ...
True if AE;.value(j) == True forallj = i~ Lto1,False otherwise
True if AE,.start < AE,.start < .. < AE..start < i
True if all AE,.start, AE,.start, ..., AE;.start < i

True ifAEy.start < AE,.start < .. < AE.start
< i and for all j k |AE;. start — AE.start| <=L

CE = SET([AE, ..., AE;],i,L) True if all AE,.start, AE,.start, ... , AEK.start

< iand for all j, k |AE;. start — AE.start| <=L

Fig. 4: Definitions of atomic events (AE), complex events
(CE), and various operators

B. Domain Adaptation for Complex Events

In DANCER, the key to achieving domain adaptation in
complex event settings is done via a suite of cascading

Zhttps://github.com/nesl/LanguageCE

interfaces requiring different amounts of annotation effort, and
a backend algorithm that aims to minimize such effort.

Algorithm 1 Domain Adaptation
Input: List of vicinal events LVE, complex event program CP
: CVE = find_critical_events(LVE,CP)
: to_annotate = | ], con firmed = [ ]
: for v_e in CVE do
res = user_verify(v_e)
if res.val then
add res.data to confirmed
else
add res.data to to_annotate
. statuses = veri fy_ae_statuses(con firmed, CP)
: missed_times = get_t_intervals(statuses)
: for interval in missed_times do
v_e = get_events(LV E, interval.start, interval.end)
res = user_verify(v_e)
if res.val then
add res.data to confirmed
else
add res.data to to_annotate
. statuses = veri fy_ae_statuses(con firmed, CP)
. missed_times = get_t_intervals(statuses)
. for ¢ i in missed_times do
res = user_check_video(t_i.start,t_i.end)
add res.data to to_annotate
: for curr in to_annotate do
24: labelled = user_annotate_image(curr.image)
25: add labelled to confirmed

26: add_to_dataset(con firmed)

R A S e

OO N R m m e e e e e e e
W T QYRR RERD 22

Algorithm 1 shows our domain adaptation algorithm. It first
determines the set of vicinal events that contributed to an
atomic event being detected (line 1). Then, for every vicinal
event, we ask the user to verify if a given statement is true
or false for an image (lines 3-8). Using the user-confirmed
vicinal events, we verify which atomic events have occurred
and which were missed (line 9). We then obtain intervals of
time where an atomic event could have been missed and ask
users to verify vicinal events within that range (lines 10-17).
We re-verify which atomic events have occurred, and ask users
to annotate potions of a video where relevant vicinal events
could have occurred (18-22). Finally, any vicinal events that
were incorrectly detected trigger an image labeling process
(lines 23-25). We then save all user-confirmed events into our
dataset (line 26), which is used to fine-tune the object detection
model.

C. Simulation-based Generation of Complex Events Traces

We generate two types of complex events. The first
type involves simulating the movement and behaviors of
military entities across a map, as captured by multiple
surveillance drones. The second type of complex event in-
volves simulating pedestrians, packages, and vehicles across



ID | Description # samples for each case
1 Prepare to Destroy Bridge 38 /547127

2 Move column of tanks across bridge | 41/0/0

3 Set up stationary defensive position 52/0/0

TABLE I: Complex event examples for military. There are
3 cases: no domain shift, alternative tank appearances, and
smoky visual conditions.

multiple intersections in a city, as captured by multiple
traffic cameras. These datasets are publicly available at
https://github.com/nesl/ComplexEventDatasets.

1) Complex Event Generation: Military Settings: We have
developed a Unity-based [42] tool called NPSim, which de-
fines a library of behaviors for different types of vehicles,
including both civilian and military vehicles. Vehicles seek out
various waypoints as well as custom maneuvers for evasion.
Behaviors may then be stitched together to produce complex
events. NPSim introduces two examples of perceptual domain
shift. The first example is intermittent wildfire smoke, which
partially occludes the visibility of different vehicles (shown in
the right of Figure 5. The second example is a variation of
enemy entity appearance, which the trained object detection
model we use has never seen. In this case, we replace the
regular appearance of tanks with a new design, shown on the
left of Figure 5. We only simulate these domain shift examples
for complex event ID 1. Our dataset and complex events
are described in Table I. Each sample involves 3 cameras
recording a 10 minute video, resulting in roughly 106 hours
of video data.

Fig. 5: Domain shift example for object appearances (left) and
environmental conditions (right)

2) Complex Event Generation: Urban Settings: We also
develop a set of behaviors on top of Scenic [43], which is
a programming language for generating complex scenarios in
the CARLA [44] simulator while allowing for probabilistic
behavioral policies of different agents (such as pedestrians or
vehicles). Variation across the same complex event is achieved
by introducing varying object appearances (such as car model
or pedestrian clothing), differences in timing for spawning and
movement, and finally weather and time of day conditions.
In this dataset, we have two types of domain shift. The
first is rainy weather conditions, and the second is the same
environment set to nighttime. We create a dataset of various
complex events, described in Table II. Each sample involves
2-3 cameras and ranges between 30 seconds to 3 minutes, with
a total of roughly 30 hours of video data.

ID | Description # samples for each case
4 Flash robbery 35/720/20
5 Street takeover 20/20/19
6 Package theft 20/20/20
7 Coordinated attack | 18 /17 /19
8 Hit and Run 20 /20 /20

TABLE II: Complex event examples for urban settings. We
consider 3 cases: no domain shift (sunny weather), rainy
weather, and nighttime

|:| No domain shift |:| No domain shift
[] Alternative tank appearances [1 rainy weather
D Smoky visual conditions D night time
11— | [ |
0.8 |[] -1 -
>
8
s 0.6 — [~ —
jo=]
Q
2 0.4]- - -
0.2 — == —
0= T T \ \ T T \
1 2 3 4 5 6 7 8

Complex Event ID

Fig. 6: CE detection accuracy prior to domain adaptation

While all the simulated complex events showcased disjoint
camera viewpoints, we consider the possibility of leveraging
multiple overlapping viewpoints in future work. This would
allow us to fuse predictions across cameras, improving the
accuracy of complex event detection.

V. EVALUATION

For the DANCER client devices, we use Nvidia’s Jetson
TX2 [45] equipped with 8GB VRAM. These devices have
two different object detection models. The first is the default
YOLOVv5s [40] detection model trained on the COCO dataset
[46], while the second is a YOLOvSs detection model fine-
tuned on several different classes of military vehicles. When
running experiments involving urban scenarios, we utilize the
former object detection model, while military scenarios utilize
the latter. For every complex event (CE) case, we replay
each video on the client device to mimic capturing a real-
time camera feed. Our experiments demonstrate that YOLOvS5s
tracking and vicinal event detection on the edge devices are
capable of achieving 12-15fps, which is sufficient for our
dataset. Results from the DANCER client are then transmitted
over WiFi to the CE coordinator device, which is a desktop
machine equipped with two Nvidia RTX A5000 GPUs [47] to
perform domain adaptation, complex event reasoning, as well
as simulation and storage of new complex events.

A. Accuracy of Detected CEs

Figure 6 shows the results in capturing complex events
across both military and urban scenarios using DANCER. Note
that complex IDs 2 and 3 do not have any domain shift data,



Short Duration CE Long Duration CE

Subsample | NDA | Subsample | NDA
Avg. Time (sec) 96.7 86.7 674.3 244.6
Avg. # Annotated Images | 9.3 3.1 5.6 33

TABLE III: User annotation effort across different annotation
methods

and thus performance can not be measured. Complex IDs 6
and 7 involve an entirely new object (a package) that is unseen
by the object detector during its training, resulting in zero
accuracy.

B. Domain Shift

When performing adaptation, we measure the amount of
time and number of annotations required using our method,
called Neurosymbolic Domain Adapt (VDA). We compare
NDA against a method that involves subsampling frames
from a video and annotating images. We call this method
subsample. In the subsample method, we sample 1 video
frame every 10 seconds for the military scenarios (complex
IDs 1-3) and 5 seconds for urban scenarios (complex IDs
4-8). We use 2 human annotators, each of whom uses both
the subsample and our domain adaptation method. Annotators
were permitted to skip over images if they had annotated a
similar one within the same CE example. We measure the
average amount of time taken to annotate a single complex
event as well as the average number of images that the user
must annotate. We annotate 2 examples from every CE ID and
leave the remaining cases for evaluation. The results of the
annotation effort are shown in Table III. Urban CE scenarios
take less than 3 minutes (which we name Short Duration CE),
while military scenarios take 10 minutes (which we name
Long Duration CE). Urban scenarios typically experience
more dynamic objects, resulting in more images to label in
the subsample method. This does not affect our method, as
we focus strictly on images related to the CE. Our method is
able to reduce the amount of time taken for CE annotations
by a factor of 1.1-2.7x while reducing the number of images
to label by 1.6-3x. Note that users produce fewer annotated
images yet take longer to annotate complex events for long
duration CEs of the subsample method. This is expected, since
users must still spend time viewing each subsampled frame
before annotation, whereas our method produces a minimal
set of frames to view and annotate.

After the annotation process, we retrain our object detection
models using the provided annotations from both the subsam-
ple method and our domain shift method. We then test the
fine-tuned models on an unseen set of complex events and
show their performance in Figure 7.

C. Accuracy After Domain Adaptation

Figure 7 shows the performance of different domain adap-
tation approaches. The colored bars refer to the same domain
shift descriptions from the legend in Figure 6. In nearly all
cases, our method of domain shift is able to improve the
accuracy of complex event detection, particularly in cases
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Fig. 7: Accuracy of CE detection without domain adaptation,
with the subsample method, and with NDA(ours)

where new objects emerge and there are significant visual
differences (e.g. smoke or night). While non-domain adap-
tation has an average 50.17% accuracy across all complex
event and domain shift types, our method yields an average
74.3% accuracy (a 48% increase). However, our method does
not always outperform the subsample approach which has
the advantage of being able to annotate a significantly larger
number of images at the cost of annotation effort. The last
case (ID 8) is also an interesting case - both methods fail to
outperform the non-domain adaptation case. This is possibly
due to catastrophic forgetting [48] in neural networks as some
prior information is overwritten.

VI. CONCLUSION

The DANCER neurosymbolic architecture for complex
event detection that we presented is capable of supporting
domain adaptation with minimal user annotation effort. Our
proposed domain adaptation method decreases annotation time
by up to 2.7x compared to a subsampling approach, while
simultaneously improving complex event detection accuracy
under perceptual domain shift by 48%. Domain shifts are how-
ever not limited to perception, and can also arise from concept
drifts due to changes in tactics and procedures, which would
require fine-tuning the symbolic stage. Our future research will
explore this topic besides also generalizing DANCER to other
complex event types and sensing modalities.
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